Как быстро научиться делить числа


деление в уме. Магия чисел [Моментальные вычисления в уме и другие математические фокусы]

Глава 4

Разделяй и властвуй: деление в уме

Деление в уме — чрезвычайно полезный навык как для бизнеса, так и для повседневной жизни. Сколько раз в неделю вы сталкиваетесь с ситуациями, которые требуют от вас что-то равномерно распределить, например счет в ресторане? Точно такой же навык оказывается кстати, когда вы хотите выяснить стоимость одной упаковки корма для собак, или поделить выигрыш во время игры в покер, или узнать, сколько литров бензина можно купить на 20 долларов. Способность делить в уме избавит вас от необходимости постоянно обращаться к калькулятору, когда вам нужно что-либо посчитать.

При выполнении устного деления метод вычисления слева направо вступает в свои права. Именно ему нас учили в школе, так что вы будете заниматься естественным для себя делом. Помню, что, будучи ребенком, думал, будто метод деления слева направо олицетворяет то, какой арифметика должна быть в принципе. Я часто размышлял о том, что если бы в школе нашли способ преподавать и деление справа налево, они, вероятно, так бы и сделали!

ДЕЛЕНИЕ НА ОДНОЗНАЧНОЕ ЧИСЛО

Первый шаг при делении в уме — предположить, из скольких цифр будет состоять итоговый ответ. Чтобы понять, что я имею в виду, попробуйте решить вот такую задачу: 179 ? 7

Чтобы разделить 179 на 7, нужно найти такое число Q, которое 7 раз по Q составит 179. Очевидно, что поскольку 179 находится между 7 х 10 = 70 и 7 х 100 = 700, Q должно размещаться между 10 и 100. Стало быть, ответ является двузначным числом. Зная это, сначала определяем наибольшее кратное 10, которое может быть умножено на 7 и в итоге оказаться меньше 179. Нам известно, что 7 х 20 = 140 и 7 х 30 = 210, значит, ответ будет в диапазоне «20 плюс». Отталкиваясь от этого, мы уже можем реально проговорить число «20», так как это будет часть ответа, и она точно не изменится. Далее вычитаем 179–140 = 39. Теперь наша задача сведена к делению 39 х 7. Так как 7 х 5 = 35, что на 4 меньше 39, у нас появилась вторая часть ответа «5» с остатком 4, или, если вы предпочитаете говорить так: 25 и 4/7. Вот как выглядит данный процесс деления[3].

Попробуем решить похожую задачу, используя аналогичные расчеты.

675 ? 8

Как и раньше, если 675 находится между 8 х 10 = 80 и 8 х 100 = 800, то ответ должен быть меньше 100 и выражаться двузначным числом. Чтобы произвести деление, учтем, что 8 х 80 = 640 и 8 х 90 = 720. То есть ответ должен быть в диапазоне 80 «с хвостиком». Но с каким хвостиком? Чтобы это узнать, вычтите 640 из 675 для получения остатка 35. После произнесения вами «80» наша задача сведется к 35 ? 8. Так как 8 х 4 = 32, итоговый ответ будет 84 с остатком 3, или 84 и 3/8.

Схематически данный пример представим так:

Как и большинство устных вычислений, процесс деления можно рассматривать как процесс упрощения. Чем больше числа в первом действии, тем проще становится задача. То, что начиналось как 675 ? 8, было сведено к меньшей задаче 35 ? 8.

Теперь рассмотрим пример, при решении которого получается трехзначное число.

947 ? 4

На этот раз ответ будет содержать три цифры, потому что 947 находится между 4 х 100 = 400 и 4 х 1000 = 4000. Нам следует отыскать наибольшее кратное 100, наиболее близкое к 947.

Поскольку 4 х 200 = 800, то есть «200 плюс», так что вперед, произнесите это! Вычитание 800 из 947 преподносит новую задачу на деление 147 ? 4. Так как 4 х 30 = 120, теперь мы уже можем сказать: «30». После вычитания 120 из 147 вычисляем 27 ? 4 для получения остальной части ответа: 6 с остатком 3.

В совокупности имеем 236 с остатком 3, или 236 и 3/4.

Процесс деления четырехзначного числа на одну цифру столь же прост, как и следующий пример.

2196 ? 5

Здесь ответ будет исчисляться сотнями, потому что 2196 находится между 5 х 100 = 500 и 5 х 1000 = 5000. После вычитания 5 х 400 = 2000 из 2196 мы можем произнести «400», и наша задача сведется к деления 196 на 5, что вычисляется так же, как и в предыдущих примерах.

На самом деле существует более простой способ решения последней задачи. Ее можно упростить путем удвоения обоих чисел. Так как 2196 х 2 = 4392, то имеем 2196 ? 5 = 4392 ? 10 = 439,2, или 439 и 2/10. Мы рассмотрим другие способы упрощения при делении в следующем разделе.

УПРАЖНЕНИЕ: ДЕЛЕНИЕ НА ОДНУ ЦИФРУ

1. 318 ? 19

2. 726 ? 5

3. 428 ? 7

4. 289 ? 8

5. 1328 ? 3

6. 2782 ? 4

ПРАВИЛО БОЛЬШОГО ПАЛЬЦА

При делении в уме запоминание частей ответа может вызвать сложности в процессе вычислений. Одним из вариантов выхода из ситуации является, как мы практиковали ранее, проговаривание ответа вслух по ходу решения. Но для создания большего эффекта вы можете предпочесть (как и я) держать ответ в памяти с помощью пальцев и произносить его целиком в самом конце. Однако при этом вы рискуете столкнуться с проблемой при запоминании чисел, которые больше пяти, ведь у нас лишь пять пальцев на каждой руке. В этом вам поможет специальная техника, в основе которой лежит язык жестов. Я называю ее «Правило большого пальца». Она особенно эффективна для запоминания чисел, состоящих из трех и более цифр, и полезна не только в данной главе, но пригодится и в последующих, где придется иметь дело с задачами посложнее и числами подлиннее.

Вы уже догадались, что для запоминания чисел от 0 до 5 вам достаточно согнуть нужное количество пальцев на руке. Когда в процесс вовлечен большой палец, будет легко запомнить числа от 6 до 9. Вот список правил большого пальца.

• Чтобы задать 6, поместите большой палец на верхней части мизинца.

• Чтобы задать 7, поместите большой палец на верхней части безымянного пальца.

• Чтобы задать 8, поместите большой палец на верхней части среднего пальца.

• Чтобы задать 9, поместите большой палец на верхней части указательного пальца.

При работе с трехзначным числом задайте цифры для сотен на левой руке и для десятков на правой. Когда дело дойдет до одной цифры, вы достигнете конечной точки решения (за исключением возможного остатка). Теперь произнесите число на левой руке, число на правой руке, последнюю цифру, которую только что посчитали, и остаток (что у вас в голове).

И вот! Вы произнесли ответ!

Чтобы попрактиковаться, попробуйте решить следующую задачу на деление четырехзначного числа.

Пользуясь приемом большого пальца для запоминания ответа, вы зададите 7 на левой руке, соединив большой палец с безымянным, и 6 на правой, соединив большой палец с мизинцем. Как только вычислите последнюю цифру (она равна 3) и остаток (равный 1), можете «зачитать» итоговый ответ с ваших рук слева направо: «семь…шесть…три с остатком один».

Некоторые задачи на деление четырехзначных чисел дают четырехзначный ответ. В таком случае, поскольку у вас только две руки, вам придется вслух произнести цифру для тысячи и использовать правило большого пальца для запоминания остального ответа. Например:

Для решения этой задачи вы делите 8 на 3, чтобы получить цифру 2 для тысяч; произносите «две тысячи» вслух, затем делите 2352 на 3 привычным способом.

ДЕЛЕНИЕ НА ДВУЗНАЧНЫЕ ЧИСЛА

В этом разделе мы исходим из предположения, что вы уже освоили искусство деления на однозначные числа. Естественно, задачи на деление с увеличением делителя более сложные.

К счастью, в моем рукаве есть немного магии, чтобы облегчить вам жизнь.

Начнем с относительно простой задачи.

597 ? 14

Так как 597 находится между 14 х 10 и 14 х 100, ответ (так называемое частное) лежит между 10 и 100. Чтобы его найти, нужно в первую очередь задать вопрос: «Сколько раз по 14 даст в сумме 590?» Умножив 14 х 40 = 560, вы узнаете, что ответ будет в диапазоне «40 плюс»; так что можно смело произнести вслух «сорок».

Далее вычитаем 560 из 597 и получаем 37, что сводит задачу к делению 37 на 14. Так как 14 х 2 = 28, здесь ответ — 42. Вычитая 28 из 37, мы получаем остаток 9. Процесс решения задачи показан следующим образом.

Следующая задачка немного сложнее, потому что делитель в ней больше.

682 ? 23

В данном примере ответ будет двузначным числом, так как 682 находится между 23 х 10 = 230 и 23 х 100 = 2300. Чтобы найти цифру для десятка двузначного числа, нужно подумать: «Сколько раз по 23 даст в сумме 680?» Если вы попробуете 30, то увидите, что здесь незначительный перебор, так как 23 х 30 = 690. Но теперь вы знаете, что ответ лежит в диапазоне «20 плюс» и можете произнести это вслух. Затем вычтите 23 х 20 = 460 из 682, чтобы получить 222. Так как 23 х 9 = 207, ответ — 29 и остаток 222–207 = 15.

Теперь вычислим:

491 / 62

Так как 491 меньше, чем 62 х 10 = 620, ответ будет представлен одной цифрой с остатком. Можно попробовать 8, но 62 х 8 = 496, а это несколько больше делимого. Поскольку 62 х 7 = 434, ответ — 7 и остаток 491–434 = 57, или 7 и 57/62.

Один отличный трюк может облегчить решение таких задач. Помните, как сначала мы пытались перемножить 62 х 8 = 496, но обнаружили, что это число больше, чем нужно? Но это действие оказалось не напрасным. Помимо информации о том, что ответ — 7, оно также позволяет сразу определить остаток.

Поскольку 496 на 5 единиц больше 491, остаток будет на 5 единиц меньше делителя 62. Поскольку 62 — 5 = 57, то ответ — 7 и 57/62. Этот прием работает потому, что 491 = (62 х 8) — 5 = 62 х (7 + 1) — 5 = (62 х 7 + 62) — 5 = (62 х 7) + (62 — 5) = 62 х 7 + 57.

Теперь попробуйте решить пример 380 ? 39, используя вышеописанную уловку. Итак, 39 х 10 = 390, что больше делимого на 10. Стало быть, ответ будет 9 с остатком 39–10 = 29.

Следующий вызов для вас — деление четырехзначного числа на двузначное.

3657 / 54

Так как 54 х 100 = 5400, то ответ будет двузначным числом. Для получения первой цифры ответа необходимо выяснить, сколько раз по 54 даст в сумме 3657. Исходя из того что 54 х 70 = 3789 (что немного больше делимого), ответ будет где-то в диапазоне «60 плюс».

Далее умножаем 54 х 60 = 3240 и вычитаем 3657–3240 = 417. Как только вы произнесете «60», ваша задача упростится до 417 ? 54. Поскольку 54 х 8 = 432 (что тоже немного больше 417), последняя цифра будет 7 с остатком 54–15 = 39.

Теперь попробуйте свои силы в решении задачи с трехзначным частным:

Упрощение задач на деление

Если к этому моменту ваш мозг уже устал от перенапряжения, расслабьтесь. Как и было обещано, я поделюсь с вами несколькими приемами упрощения задач на деление в уме. Они основаны на принципе деления обеих частей задачи на общий множитель. Если оба числа в примере четные, вы можете вдвойне упростить проблему путем деления каждого числа на 2 перед началом вычислений. Например, задача 858 ? 16 содержит два четных числа, и их деление на 2 ведет к значительно более простому действию 429 ? 8.

Как видите, остатки 10 и 5 различны; но если записать их в виде дроби, получится 10/16, что равно 5/8. Поэтому в данном методе ответ всегда должен быть представлен в виде дроби.

Мы проделали оба типа вычислений для того, чтобы вы убедились, насколько второй способ легче. Теперь ваша очередь практиковаться:

Пример справа гораздо легче решить в уме. Если вы все еще в этом не уверены, можете разделить обе части исходной задачи на 18 для получения еще более простой задачи: 201 ? 3 = 67.

Высматривайте задачи, которые можно подвергнуть делению на 2 дважды, такие как 1652 ? 36.

Мне кажется, что проще дважды разделить числа на 2, чем делить каждое из чисел на 4. Теперь рассмотрим случай, когда оба числа оканчиваются на 0. В этой ситуации можно каждое число разделить на 10.

Если оба числа заканчиваются на 5, удвойте их, а затем разделите на 10 для упрощения задачи. Например:

Наконец, если делитель оканчивается на 5, а делимое на 0, умножьте оба на 2, а затем разделите на 10 и далее действуйте так, как мы делали выше.

УПРАЖНЕНИЕ: ДЕЛЕНИЕ НА ДВУЗНАЧНЫЕ ЧИСЛА

Здесь вы найдете разнообразные задачи по делению на двузначные числа, которые проверят ваше ментальное мастерство и умение пользоваться простыми техниками упрощения, которые были объяснены в этой главе. Загляните в конец книги для получения объяснений и сверки ответов.

1. 738 ? 17

2. 591 ? 24

3. 321 ? 79

4. 4268 ? 28

5. 7214 ? 11

6. 3074 ? 18

РАЗВИВАЕМ СВОИ СПОСОБНОСТИ: ИЗУЧЕНИЕ ДЕСЯТИЧНОЙ СИСТЕМЫ СЧИСЛЕНИЯ

Как вы уже, наверное, догадались, мне нравится заниматься магией, превращая обычные дроби в десятичные. В случае с дробями, в знаменателе которых есть только одна цифра, лучший способ превратить их в десятичные — это почерпнуть их значения из памяти. Это не так сложно, как кажется. Далее вы увидите, что большинство дробей, числители и знаменатели которых представлены однозначными числами (а также 10 или 11), обладают особыми свойствами, поэтому их сложно забыть. Каждый раз, когда вы можете сократить дробь до уже известного вам значения, это ускорит процесс вычислений.

Уверен, вы уже знаете десятичные эквиваленты для следующих дробей:

1/2 = 0,50;

1/3 = 0,333…;

2/3 = 0,666…

Подобно этому

1/4 = 0,25;

2/4 = 1/2 = 0,50;

3/3 = 0,75.

Дроби с пятерками в знаменателе запомнить легче всего.

1/5 = 0,20;

2/5 = 0,40;

3/5 = 0,60;

4/5 = 0,80.

Дроби с шестерками в знаменателе требуют запоминания только двух новых значений.

1/6 = 0,1666…;

2/6 =1/3 = 0,333…;

3/6 = 1/2 = 0,50;

4/6 = 2/3 = 0,666…;

5/6 = 0,8333…

Через мгновение я вернусь к дробям с семерками в знаменателе. А сейчас дроби с восьмерками в знаменателе, преобразовать которые просто элементарно.

1/8 = 0,125;

2/8 = 1/4 = 0,25;

4/8 = 1/2 = 0,50;

6/8 = 3/4 = 0,75;

Дроби с девятками в знаменателе таят в себе особое волшебство.

где черта над цифрой обозначает бесконечное повторение этой цифры (говорят, что это дробь в периоде). Например, 4/9 = 0,444…

Дроби с десятками в знаменателе нам уже известны.

1/10 = 0,1; 2/10 = 0,2; 3/10 = 0,3;

4/10 = 0,4; 5/10 = 0,5; 6/10 = 0,6;

7/10 = 0,7; 8/10 = 0,8; 9/10 = 0,9.

Дроби со знаменателем 11 легко вычисляются, если вы запомните, что 1/11 = 0,0909.

Дроби со знаменателем 7 действительно выдающиеся. Как только вы запомните, что 

 то сможете без труда получить значения других дробей с 7 в знаменателе.

Обратите внимание, что последовательность цифр в периоде циклически повторяется в каждой дроби, при этом изменяется лишь начальная цифра последовательности. Ее можно определить путем умножения 0,14 на числитель дроби.

Например, для дроби 2/7 имеем 2 х 0,14 = 0,28. Поэтому последовательность должна начинаться с 2. Для дроби 3/7 это 3 х 0,14 = 0,42, значит, последовательность начинается с 4.

Другие дроби подчиняются тому же правилу.

Конечно, в процессе решения разнообразных задач вы обязательно столкнетесь с дробями, превышающими 10/11. Поэтому постоянно обдумывайте способы упрощения таких задач. Например, можно упростить дробь 18/34 путем деления числителя и знаменателя на 2, чтобы сократить задачу до 9/17 (ее будет легче решить).

Если знаменатель дроби — четное число, можно упростить дробь, уменьшив ее вдвое, даже если числитель нечетный.

Например,

9/14 = 4,5/7

Деление числителя и знаменателя на 2 сведет проблему к дроби с семеркой в знаменателе. Хотя ранее показанная последовательность дробей не предоставляет десятичного варианта для дроби 4,5/7, как только вы начнете считать, заученное число неожиданно всплывет в памяти.

Как видите, вам не пришлось решать задачу целиком.

Стоит вам разделить 3 на 7, и вы точно произведете огромное впечатление на публику, отбарабанив этот длинный набор цифр почти мгновенно![4]

Когда делитель заканчивается на 5, то почти всегда умножение на 2, а потом деление на 10 оправдывает себя. Например:

Числа, которые заканчиваются на 25 или 75, надо сначала умножить на 4 и затем разделить на 100.

Этот трюк можно применять даже в середине расчетов.

Если вам нужно вычислить дробь 3/16, произойдет вот что:

Как только задача сведется к вычислению 14/16, можно привести ее к виду 7/8, что, как известно, равняется 0,875.

Отсюда 3/16 = 0,1875[5].

УПРАЖНЕНИЕ: ПРИВЕДЕНИЕ ДРОБЕЙ К ДЕСЯТИЧНОЙ ФОРМЕ

Чтобы решить следующие задачи, не забудьте использовать полученные знания о десятичном виде различных «одноцифровых» дробей. Везде, где это целесообразно, упрощайте дроби, прежде чем преобразовать их в десятичные.

1. 2/5 2. 4/7 3. 3/8 4. 9/12 5. 5/12 6. 6/11

7. 14/24 8. 13/27 9. 18/48 10. 10/14 11. 6/32 12. 19/45

ПРИЗНАКИ ДЕЛИМОСТИ

В последнем разделе мы узнали, как упростить задачи на деление, если числитель и знаменатель поделить на общий множитель. В завершение этой главы обсудим, как определить, является ли одно число делителем другого. Это поможет упростить задачу на деление и ускорить процесс решения многих задач на умножение, а также пригодится, когда мы доберемся до продвинутого умножения, где часто придется искать способы разложить на множители двух-, трех- или даже пятизначные числа. Умение делать это окажется весьма полезным.

Проверить, делится ли число на 2, довольно просто. Вам нужно только определить, является ли последняя цифра четной. Если это 2, 4, 6, 8 или 0, то число целиком делится на 2.

Чтобы протестировать число на делимость на 4, проверьте, делятся ли на 4 две его последние цифры. Число 57 852 кратно 4, потому что 52 = 13 х 4. Число 69 346 не кратно 4, поскольку 46 не делится на 4 без остатка. Это правило работает потому, что 4 делит 100 и, следовательно, любое число, кратное 100.

Таким образом, поскольку 57 800 и 52 делятся на 4, то 4 поделит и их сумму, то есть 57 852.

Аналогично, так как 1000 делится на 8, для проверки кратности 8 достаточно выяснить, делятся ли на 8 последние три цифры числа. Например, для 14 918 надо проверить число 918 на делимость на 8. Однако при делении 918 на 8 имеем остаток (918 ? 8 = 114 6/8), из чего делаем вывод, что число 14 918 на 8 не делится. Можно также заметить, что 18 (две последние цифры числа 14 918) не делится на 4, а так как 14 918 не делится на 4, оно не может делиться и на 8.

Когда дело доходит до делимости на 3, предлагаю запомнить одно простое правило: число делится на 3 тогда и только тогда, когда сумма составляющих его цифр делится на 3 (независимо от того, сколько цифр в числе). Чтобы выяснить, делится ли 57 852 на 3, просто сложите 5 + 7 + 8 + 5 + 2 = 27. Так как 27 кратно 3, то и 57 852 будет кратно 3. Столь же удивительное правило справедливо и для делимости на 9. Число делится на 9 тогда и только тогда, когда сумма составляющих его цифр кратна 9. Поэтому 57 852 кратно 9, тогда как число 31 416, сумма цифр которого равна 15, на 9 не делится. Объясняется это правило тем, что числа 1, 10, 100, 1000, 10000 и т. д. всегда на единицу больше кратного 9.

Число делится на 6 только в том случае, если оно четное и делится на 3. Так что кратность 6 легко проверить.

Установить, делится ли число на 5, еще проще. Любое число, независимо от величины, кратно 5 тогда и только тогда, когда оно заканчивается на 5 или 0.

Выяснить делимость на 11 почти так же просто, как на 3 или на 9. Число делится на 11 тогда и только тогда, когда в результате попеременного вычитания и сложения составляющих его цифр вы получите либо 0, либо кратное 11.

Например, 73 958 не делится на 11, потому что 7–3 + 9–5 + 8 = 16. Однако числа 8 492 и 73 194 кратны 11, так как 8–4 + 9–2 = 11 и 7–3 + 1–9 + 4 = 0. Это правило работает потому, что числа 1, 100, 10 000, 1 000 000 на единицу больше кратного 11, в то время как числа 10, 1000, 100 000 и т. д. на единицу меньше величины, кратной 11.

Проверка делимости на 7 несколько сложнее. Если вы прибавите (или вычтите) число, кратное 7, к проверяемому (или из проверяемого) и полученный результат будет делиться на 7, ответ положительный. Я всегда выбираю такое прибавляемое или вычитаемое кратное 7, чтобы в итоге сумма или разность заканчивалась на 0. Например, для проверки числа 5292 я вычитаю 42 (кратное 7), чтобы получить 5250.

Далее избавляюсь от 0 на конце (так как деление на десять не влияет на проверку делимости на семь), получая в итоге 525. Затем повторяю процесс, прибавляя 35 (кратное 7), что дает мне 560. Когда я удалю 0, то останусь с числом 56, которое, как мне известно, кратно 7. Таким образом, исходное число 5292 делится на 7.

Этот метод работает не только для 7, но и для любого нечетного числа, кроме оканчивающегося на 5. Например, чтобы проверить, делится ли 8792 на 13, вычитаем 4 х 13 = 52 из 8792 и получаем 8740. Опуская 0, имеем 874. Затем прибавляем 2 х 13 = 26, выходит 900. Удаление двух нулей оставляет нас с числом 9, которое, очевидно, не кратно 13. Таким образом, 8792 не делится на 13.

УПРАЖНЕНИЕ: ПРОВЕРКА НА ДЕЛИМОСТЬ

В этом упражнении будьте особенно внимательны при проверке делимости на 7 и 17. Остальное не должно представлять для вас трудностей.

Делимость на 2

1. 53 428 2. 293 3. 7241 4. 9846

Делимость на 4

5. 3932 6. 67 348 7. 358 8. 57 929

Делимость на 8

9. 59 366 10. 73 488 11. 248 12. 6111

Делимость на 3

13. 83 671 14. 94 737 15. 7359 16. 3 267 486

Делимость на 6

17. 5334 18. 67 386 19. 248 20. 5991

Делимость на 9

21. 1234 22. 8469 23. 4 425 575 24. 314 159 265

Делимость на 5

25. 47 830 26. 43 762 27. 56 785 28. 37 210

Делимость на 11

29. 53 867 30. 4969 31. 3828 32. 941 369

Делимость на 7

33. 5784 34. 7336 35. 875 36. 1183

Делимость на 17

37. 694 38. 629 39. 8273 40. 13 855

ОБЫКНОВЕННЫЕ ДРОБИ

Если вы в состоянии управиться с целыми числами, то арифметические действия с дробями покажутся вам почти такими же легкими. В этом разделе мы сделаем обзор основных методов сложения, вычитания, умножения, деления и сокращения обыкновенных дробей. Те, кто знаком с дробями, могут спокойно его пропустить.

Умножение обыкновенных дробей

Чтобы перемножить две обыкновенные дроби, нужно просто перемножить их числители (верхние числа), а затем знаменатели (нижние числа). Например:

2/3 х 4/5 = 8/15

1/2 х 5/9 = 5/18

Что может быть проще! Попробуйте следующие упражнения, прежде чем двигаться дальше.

УПРАЖНЕНИЕ: УМНОЖЕНИЕ ОБЫКНОВЕННЫХ ДРОБЕЙ

1. 3/5 х 2/7

2. 4/9 х 11/7

3. 6/7 х 3/4

4. 9/10 х 7/8

Деление обыкновенных дробей

Деление дробей столь же легкое, как и умножение. Однако оно требует одного дополнительного действия. Сначала переверните вторую дробь с ног на голову (это называется обратная дробь), а затем умножайте. Например, обратная дробь для 4/5 будет 5/4. Следовательно,

2/3 ? 4/5 = 2/3 х 5/4 = 10/12

1/2 ? 5/9 = 1/2 х 9/5 = 9/10

УПРАЖНЕНИЕ: ДЕЛЕНИЕ ОБЫКНОВЕННЫХ ДРОБЕЙ

Теперь ваша очередь. Поделите эти дроби.

1. 2/5 ? 1/2

2. 1/3 ? 6/5

3. 2/5 ? 3/5

Сокращение обыкновенных дробей

Дроби можно рассматривать как маленькие задачки на деление. Например, 6/3 то же самое, что и 6 ? 3 = 2. Дробь 1/4 то же самое, что и 1 ? 4 (или 0,25 в десятичной форме). Известно, что если умножить любое число на 1, то это число не изменится.

Например, 3/5 = 3/5 х 1. Но если заменить 1 дробью 2/2, то получим 3/5 = 3/5 х 1 = 3/5 х 2/2 = 6/10. Следовательно, 3/5 = 6/10.

По такому же принципу, заменив 1 дробью 3/3, получим 3/5 = 3/5 х 3/3 = 9/15. Другими словами, если мы умножаем числитель и знаменатель на одно и то же число, то получаем дробь, равную исходной.

Вот еще пример:

2/3 = 2/3 х 5/5 = 10/15

Верно и то, что, деля числитель и знаменатель на одинаковое число, мы получаем дробь, равную исходной.

Например:

4/6 = 4/6 ? 2/2 = 2/3

25/35 = 25/35 ? 5/5 = 5/7

Это сокращение дроби.

УПРАЖНЕНИЕ: СОКРАЩЕНИЕ ДРОБЕЙ

Найдите дробь со знаменателем 12, равную дробям, представленным ниже.

1. 1/3 2. 5/6 3. 3/4 4. 5/2

Сокращение дробей.

5. 8/10 6. 6/15 7. 24/36 8. 20/36

Сложение дробей

Это действие можно считать простым, когда знаменатели равны. В этом случае складываются числители и сохраняется прежний знаменатель.

Например:

3/5 + 1/5 = 4/5; 4/7 + 2/7 = 6/7

Иногда можно упростить ответ. Например:

1/8 + 5/8 = 6/8 = 3/4

УПРАЖНЕНИЕ: СЛОЖЕНИЕ ДРОБЕЙ (С РАВНЫМИ ЗНАМЕНАТЕЛЯМИ)

1. 2/9 + 5/9

2. 5/12 + 4/12

3. 5/18 + 6/18

4. 3/10 + 3/10

Более коварный случай — различные знаменатели. Когда знаменатели не равны, нужно заменить исходные дроби дробями с равными знаменателями.

Например, сложите

1/3 + 2/15

Заметим, что

1/3 = 5/15

Поэтому

1/3 + 2/15 = 5/15 + 2/15 = 7/15

При сложении

1/2 + 7/8

Замечаем, что

1/2 = 4/8

Тогда

1/2 + 7/8 = 4/8 + 7/8 =11/8

При сложении

1/3 + 2/5

Видим, что

1/3 = 5/15 и 2/5 = 6/15

В итоге

1/3 + 2/5 = 5/15 + 6/15 = 11/15

УПРАЖНЕНИЕ: СЛОЖЕНИЕ ДРОБЕЙ (С НЕРАВНЫМИ ЗНАМЕНАТЕЛЯМИ)

1. 1/5 + 1/10 2. 1/6 + 5/18 3. 1/3 + 1/5

4. 2/7 + 5/21 5. 2/3 + 3/4 6. 3/7 + 3/5 7. 2/11 + 5/9

Вычитание дробей

Вычитание дробей похоже на их сложение. Мы покажем это действие на примерах и обеспечим вас тренировочными упражнениями.

2/5 — 2/5 = 1/5; 4/7 — 2/7 = 2/7; 5/8 — 1/8 = 4/8 = 1/2

1/3 /2/15 = 5/15 — 2/15 = 3/15 = 1/5

7/8 — 1/2 = 7/8 — 4/8 = 3/8

1/2 — 7/8 = 4/8 — 7/8 = -3/8; 2/7 — 1/4 = 8/28 — 7/28 = 1/28

2/3 — 5/8 = 16/24 — 15/24 = 1/24

УПРАЖНЕНИЕ: ВЫЧИТАНИЕ ДРОБЕЙ

1. 8/11 — 3/11 2. 12/7 — 8/7 3. 13/18 — 5/18

4. 4/5 — 1/15 5. 9/10 — 3/5 6. 3/4 — 2/3

7. 7/8 — 1/16 8. 4/7 — 2/5 9. 8/9 — 1/2

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Как делить числа

Если есть 10 конфет. Сколько групп можно сделать из этих 10 шоколадных конфет с равное количество в каждой группе?

5 групп по 2 конфеты в каждой

Пояснение:

Давайте сначала заберем 2 шоколадки из 10.Останется 8 конфет.
Теперь, когда заберем 2 шоколадки из 8. 6 шоколадок останется.
Когда заберем 2 шоколадки из 6. 4 шоколадки останется.
Из оставшихся 4, когда мы заберем 2 шоколадки, 2 шоколадки останутся.
Когда мы удаляем группу из 2 человек в пятый раз, шоколадок не остается.
Получаем 5 таких групп по 2 шоколадки в каждой.
Итак, мы можем сказать, что 10 ÷ 2 = 5

,

Как делить числа на числовой строке

  1. Образование
  2. Математика
  3. Базовая математика
  4. Как делить числа на числовой строке

Для деления можно использовать числовую линию. Например, предположим, что вы хотите разделить 6 на другое число. Сначала нарисуйте числовую линию, которая начинается с 0 и заканчивается 6, как на следующем рисунке.

Теперь, чтобы найти ответ на 6 ÷ 2, просто разделите эту числовую строку на две равные части, как показано на следующем рисунке.Это разделение (или деление) происходит на 3, показывая вам, что 6 ÷ 2 = 3.

Аналогичным образом, чтобы разделить 6 на 3, разделите одну и ту же числовую строку на три равные части, как на следующем рисунке. На этот раз у вас есть два разделения, поэтому используйте тот, который ближе всего к 0. Эта числовая линия показывает, что 6 ÷ 3 = 2.

Но предположим, что вы хотите использовать числовую черту, чтобы разделить небольшое число на большее число. Например, вы хотите узнать ответ на вопрос 3 ÷ 4. Сначала нарисуйте числовую линию от 0 до 3.Затем разделите его на четыре равные части. К сожалению, ни один из этих расколов не удался. Это не ошибка. Вам просто нужно добавить несколько новых чисел в числовую строку, как вы можете видеть на следующем рисунке.

Добро пожаловать в мир дробей. Если числовая линия правильно помечена, вы можете видеть, что разделение, наиболее близкое к 0, составляет 3/4. Это изображение говорит вам, что 3 ÷ 4 = 3/4.

Сходство выражения 3 ÷ 4 и дроби 3/4 не случайно. Деление и дроби тесно связаны.Когда вы делите, вы делите вещи на равные части, и дроби часто являются результатом этого процесса.

,

10 уловок для быстрого выполнения математических операций в голове

Не нужно быть учителем математики, чтобы знать, что многие ученики - и, вероятно, многие родители (это было давно!) - боятся математических задач, особенно если они включают большое количество. Изучение методов быстрого выполнения математики может помочь учащимся развить большую уверенность в математике, улучшить математические навыки и понимание, а также преуспеть в продвинутых курсах.

Если это ваша работа - научить их, вот вам отличный урок.

10 уловок для быстрой математики

Вот 10 быстрых математических стратегий, которые учащиеся (и взрослые!) Могут использовать, чтобы вычислить в уме. Освоив эти стратегии, учащиеся должны иметь возможность точно и уверенно решать математические задачи, которые они когда-то боялись решать.

1. Добавление больших чисел

Сложить в уме большие числа. Этот метод показывает, как упростить этот процесс, сделав все числа кратными 10.Вот пример:

644 + 238

Хотя с этими числами трудно бороться, округление их в большую сторону сделает их более управляемыми. Итак, 644 становится 650, а 238 становится 240.

Теперь сложите 650 и 240 вместе. Итого 890. Чтобы найти ответ на исходное уравнение, необходимо определить, сколько мы прибавили к числам, чтобы округлить их в большую сторону.

650 - 644 = 6 и 240 - 238 = 2

Теперь сложите 6 и 2, чтобы получить 8

Чтобы найти ответ на исходное уравнение, нужно вычесть 8 из 890.

890 - 8 = 882

Итак, ответ на 644 +238 - 882.

2. Вычитаем из 1 000

Вот основное правило вычитания большого числа из 1000: вычтите все числа, кроме последнего, из 9 и вычтите последнее число из 10.

Например:

1 000–556

Шаг 1: вычтем 5 из 9 = 4

Шаг 2: вычтем 5 из 9 = 4

Шаг 3: вычтем 6 из 10 = 4

Ответ - 444.

3.Умножение любого числа

в 5 раз

Умножив число 5 на четное, можно быстро найти ответ.

Например, 5 x 4 =

  • Шаг 1: Возьмите число, умноженное на 5, и разрежьте его пополам, в результате число 4 станет числом 2.
  • Шаг 2: Добавьте ноль к числу, чтобы найти ответ. В данном случае ответ - 20.

5 х 4 = 20

При умножении нечетного числа на 5 формула немного отличается.

Например, рассмотрим 5 x 3.

  • Шаг 1: Вычтите единицу из числа, умноженного на 5, в этом случае число 3 становится числом 2.
  • Шаг 2: Теперь уменьшите вдвое число 2, чтобы получилось число 1. Сделайте 5 последней цифрой. Произведено число 15, и это и есть ответ.

5 x 3 = 15

4. Уловки деления

Вот быстрый способ узнать, когда число можно без остатка разделить на следующие числа:

  • 10, если номер заканчивается на 0
  • 9, когда цифры складываются и сумма делится на 9
  • 8, если последние три цифры делятся на 8 без остатка или равны 000
  • 6, если это четное число и при сложении цифр ответ делится на 3 без остатка.
  • 5, если он заканчивается на 0 или 5
  • 4, если оно заканчивается на 00 или двузначное число, которое делится на 4 без остатка
  • 3, когда цифры складываются и результат делится без остатка на 3
  • 2, если он заканчивается на 0, 2, 4, 6 или 8

5.Умножение на 9

Это простой метод, который помогает умножить любое число на 9. Вот как это работает:

Давайте возьмем пример 9 x 3.

Шаг 1 : Вычтите 1 из числа, которое умножается на 9.

3 - 1 = 2

Число 2 - это первое число в ответе на уравнение.

Шаг 2 : Вычтите это число из числа 9.

9–2 = 7

Число 7 - второе число в ответе на уравнение.

Итак, 9 x 3 = 27

6. 10 и 11-кратные фокусы

Уловка для умножения любого числа на 10 состоит в том, чтобы добавить ноль в конец числа. Например, 62 x 10 = 620.

Существует также простой способ умножить любое двузначное число на 11. Вот оно:

11 х 25

Возьмите исходное двузначное число и поставьте между цифрами пробел. В данном примере это число 25.

2_5

Теперь сложите эти два числа и поместите результат в центр:

2_ (2 + 5) _5

2_7_5

Ответ на 11 x 25 - 275.

Если числа в центре складываются в число из двух цифр, вставьте второе число и прибавьте 1 к первому. Вот пример уравнения 11 x 88

8_ (8 +8) _8

(8 + 1) _6_8

9_6_8

Есть ответ на 11 x 88: 968

7. Процент

Найти процентное соотношение числа может быть довольно сложно, но правильное понимание этого числа значительно упрощает понимание. Например, чтобы узнать, что составляет 5% от 235, воспользуйтесь этим методом:

  • Шаг 1: Переместите десятичную запятую на одну позицию, 235 станет 23.5.
  • Шаг 2: Разделите 23,5 на число 2, получится 11,75. Это также ответ на исходное уравнение.

8. Быстро возведите в квадрат двузначное число, которое заканчивается на 5

Давайте возьмем число 35 в качестве примера.

  • Шаг 1. Умножьте первую цифру на себя плюс 1.
  • Шаг 2: Поставьте 25 в конце.

35 в квадрате = [3 x (3 + 1)] & 25

[3 x (3 + 1)] = 12

12 и 25 = 1225

35 в квадрате = 1225

9.Трудное умножение

При умножении больших чисел, если одно из чисел четное, разделите первое число пополам, а затем удвойте второе число. Этот метод быстро решит проблему. Например, рассмотрим

20 х 120

Шаг 1: разделите 20 на 2, получится 10. Удвойте 120, что равно 240.

Затем умножьте свои два ответа вместе.

10 х 240 = 2400

Ответ на 20 x 120 - 2400.

10. Умножение чисел, оканчивающихся на ноль

Умножение чисел, оканчивающихся на ноль, на самом деле довольно просто.Это включает в себя умножение других чисел вместе, а затем добавление нулей в конце. Например, рассмотрим:

200 х 400

Шаг 1: Умножьте 2 на 4

2 х 4 = 8

Шаг 2. Поместите все четыре нуля после 8

80 000

200 x 400 = 80 000

Выполнение этих быстрых математических приемов может помочь как ученикам, так и учителям улучшить свои математические навыки и стать уверенными в своих знаниях по математике - и не бояться работать с числами в будущем.

Присоединяйтесь к Resilient Educator

Подпишитесь на нашу рассылку, чтобы получать контент, доставляемый в ваш почтовый ящик. Щелкните или коснитесь кнопки ниже.

Присоединяйтесь к Resilient Educator

Подпишитесь на нашу рассылку, чтобы получать контент, доставляемый в ваш почтовый ящик.Щелкните или коснитесь кнопки ниже.

Присоединиться

Возможно, вы прочитаете

Теги: Математика и естественные науки, Математика ,

Смотрите также