Как быстро научиться складывать числа


Как освоить устный счёт школьникам и взрослым

Кроме отличных оценок по математике, умение считать в уме даёт массу преимуществ на протяжении всей жизни. Упражняясь в вычислениях без калькулятора, вы:

  • Держите мозг в тонусе. Для эффективной работы интеллект, как и мускулатура, нуждается в постоянных тренировках. Счёт в уме развивает память, логическое мышление и концентрацию, повышает способность к обучению, помогает быстрее ориентироваться в ситуации и принимать правильные решения.
  • Заботитесь о своём психическом здоровье. Исследования показывают , что при устном счёте задействованы участки мозга, ответственные за депрессию и тревожность. Чем активнее работают эти зоны, тем меньше риск неврозов и чёрной тоски.
  • Страхуетесь от проколов в бытовых ситуациях. Способность быстро посчитать сдачу, размер чаевых, количество калорий или проценты по кредиту защищает вас от незапланированных трат, лишнего веса и мошенников.

Освоить приёмы быстрого счёта можно в любом возрасте. Не беда, если сначала вы будете немного «тормозить». Ежедневно практикуйте основные арифметические операции по 10–15 минут и уже через пару месяцев достигнете заметных результатов.

Как научиться складывать в уме

Суммируем однозначные числа

Начните тренировку с элементарного уровня — сложения однозначных чисел с переходом через десяток. Эту технику осваивают в первом классе, но почему-то часто забывают с возрастом.

  • Предположим, вам нужно сложить 7 и 8.
  • Посчитайте, сколько семёрке не хватает до десяти: 10 − 7 = 3.
  • Разложите восьмёрку на сумму трёх и второй части: 8 = 3 + 5.
  • Добавьте вторую часть к десяти: 10 + 5 = 15.

Тот же приём «опоры на десятку» используйте при суммировании однозначных чисел с двузначными, трёхзначными и так далее. Оттачивайте простейшее сложение, пока не научитесь совершать одну операцию за пару секунд.

Суммируем многозначные числа

Основной принцип — разбить слагаемые числа на разряды (тысячи, сотни, десятки, единицы) и суммировать между собой одинаковые, начиная с самых крупных.

Допустим, вы прибавляете 1 574 к 689.

  • 1 574 раскладывается на четыре разряда: 1 000, 500, 70 и 4. 689 — на три: 600, 80 и 9.
  • Теперь суммируем: тысячи с тысячами (1 000 + 0 = 1 000), сотни с сотнями (500 + 600 = 1 100), десятки с десятками (70 + 80 = 150), единицы с единицами (4 + 9 = 13).
  • Группируем числа так, как нам удобно, и складываем то, что получилось: (1 000 + 1 100) + (150 + 13) = 2 100 + 163 = 2 263.

Основная сложность — удержать в голове все промежуточные результаты. Упражняясь в таком счёте, вы заодно тренируете память.

Как научиться вычитать в уме

Вычитаем однозначные числа

Снова возвращаемся в первый класс и оттачиваем навык вычитания однозначного числа с переходом через десяток.

Предположим, вы хотите отнять 8 от 35.

  • Представьте 35 в виде суммы 30 + 5.
  • Из 5 вычесть 8 нельзя, поэтому раскладываем 8 на сумму 5 + 3.
  • Вычтем 5 из 35 и получим 30. Затем отнимем от 30 оставшуюся тройку: 30 − 3 = 27.

Вычитаем многозначные числа

В отличие от сложения, при вычитании многозначных чисел на разряды нужно разбивать только то, которое вы отнимаете.

Например, вас просят отнять 347 от 932.

  • Число 347 состоит из трёх разрядных частей: 300 + 40 + 7.
  • Сначала вычитаем сотни: 932 − 300 = 632.
  • Переходим к десяткам: 632 − 40. Для удобства 40 можно представить в виде суммы 30 + 10. Сперва вычтем 30 и получим 632 − 30 = 602. Теперь отнимем от 602 оставшиеся 10 и получим 592.
  • Осталось разобраться с единицами, используя всё ту же «опору на десятку». Сперва вычитаем из 592 двойку: 592 − 2 = 590. А затем то, что осталось от семёрки: 7 − 2 = 5. Получаем: 590 − 5 = 585.

Как научиться умножать в уме

Лайфхакер уже писал о том, как быстро освоить таблицу умножения.

Добавим, что наибольшие трудности и у детей, и у взрослых вызывает умножение 7 на 8. Есть простое правило, которое поможет вам никогда не ошибаться в этом вопросе. Просто запомните: «пять, шесть, семь, восемь» — 56 = 7 × 8.

А теперь перейдём к более сложным случаям.

Умножаем однозначные числа на многозначные

По сути, здесь всё элементарно. Разбиваем многозначное число на разряды, перемножаем каждый на однозначное число и суммируем результаты.

Разберём на конкретном примере: 759 × 8.

  • Разбиваем 759 на разрядные части: 700, 50 и 9.
  • Умножаем каждый разряд по отдельности: 700 × 8 = 5 600, 50 × 8 = 400, 9 × 8 = 72.
  • Складываем результаты, разбивая их на разряды: 5 600 + 400 + 72 = 5 000 + (600 + 400) + 72 = 5 000 + 1 000 + 72 = 6 000 + 72 = 6 072.

Умножаем двузначные числа

Тут уже рука сама тянется к калькулятору или хотя бы к бумаге и ручке, чтобы воспользоваться старым добрым умножением в столбик. Хотя ничего сверхсложного в этой операции нет. Просто нужно немного потренировать краткосрочную память.

Попробуем умножить 47 на 32, разбив процесс на несколько шагов.

  • 47 × 32 — это то же, что и 47 × (30 + 2) или 47 × 30 + 47 × 2.
  • Сначала умножим 47 на 30. Проще некуда: 47 × 3 = 40 × 3 + 7 × 3 = 120 + 21 = 141. Приписываем справа нолик и получаем: 1 410.
  • Поехали дальше: 47 × 2 = 40 × 2 + 7 × 2 = 80 + 14 = 94.
  • Осталось сложить результаты: 1 410 + 94 = 1 500 + 4 = 1 504.

Этот принцип можно применять и к числам с большим количеством разрядов, но удержать в уме столько операций не каждому под силу.

Упрощаем умножение

Кроме общих правил, есть несколько лайфхаков, облегчающих умножение на определённые однозначные числа.

Умножение на 4

Можно умножить многозначное число на 2, а потом снова на 2.

Пример: 146 × 4 = (146 × 2) × 2 = (200 + 80 + 12) × 2 = 292 × 2 = 400 + 180 + 4 = 584.

Умножение на 5

Умножьте исходное число на 10, а потом разделите на 2.

Пример: 489 × 5 = 4 890 / 2 = 2 445.

Умножение на 9

Умножьте на 10, а затем отнимите от результата исходное число.

Пример: 573 × 9 = 5 730 − 573 = 5 730 − (500 + 70 + 3) = 5 230 − (30 + 40) − 3 = 5 200 − 40 − 3 = 5 160 − 3 = 5 157.

Умножение на 11

Приём сводится к следующему: впереди и сзади подставляем первую и последнюю цифры исходного числа. А между ними последовательно суммируем все цифры.

При умножении на двузначное число всё выглядит крайне просто.

Пример: 36 × 11 = 3(3+6)6 = 396.

Если сумма переходит через десяток, в центре остаётся разряд единиц, а к первой цифре добавляем один.

Пример: 37 × 11 = 3(3+7)7 = 3(10)7 = 407.

Чуть сложнее с умножением на более крупные числа.

Пример: 543 × 11 = 5(5+4)(4+3)3 = 5 973.

Как научиться делить в уме

Это операция, обратная умножению, поэтому и успех во многом зависит от знания всё той же школьной таблицы. Остальное — дело практики.

Делим на однозначное число

Для этого разбиваем исходное многозначное число на удобные части, которые точно будут делиться на наше однозначное.

Попробуем разделить 2 436 на 7.

  • Выделим из 2 436 наибольшую часть, которая нацело разделится на 7. В нашем случае это 2 100. Получаем (2 100 + 336) / 7.
  • Продолжаем в том же духе, только теперь с числом 336. Очевидно, что на 7 разделится 280. А в остатке будет 56.
  • Теперь делим каждую часть на 7: (2 100 + 280 + 56) / 7 = 300 + 40 + 8 = 348.

Делим на двузначное число

Это уже высший пилотаж, но мы всё равно попытаемся.
Предположим, вам надо поделить 1 128 на 24.

  • Прикидываем, сколько раз 24 может поместиться в 1 128. Очевидно, что 1 128 примерно в два раза меньше, чем 24 × 100 (2 400). Поэтому для «пристрелки» возьмём множитель 50: 24 × 50 = 1 200.
  • До 1 200 нашему делимому 1 128 не хватает 72. Сколько раз 24 поместится в 72? Правильно, 3. А значит, 1 128 = 24 × 50 − 24 × 3 = 24 × (50 − 3) = 24 × 47. Стало быть, 1128 / 24 = 47.

Мы взяли не самый трудный пример, но пользуясь методом «пристрелки» и дроблением на удобные части, вы научитесь совершать и более сложные операции.

Что поможет освоить устный счёт

Для упражнений придётся ежедневно придумывать новые и новые примеры, только если вы сами этого хотите. В противном случае воспользуйтесь другими доступными способами.

Настольные игры

Играя в те, где необходимо постоянно вычислять в уме, вы не просто учитесь быстро считать. А совмещаете полезное с приятным времяпрепровождением в кругу семьи или друзей.

Карточные забавы вроде «Уно» и всевозможные варианты математического домино позволяют школьникам играючи освоить простое сложение, вычитание, умножение и деление. Более сложные экономические стратегии а-ля «Монополия» развивают финансовое чутьё и оттачивают сложные навыки счёта.

Что купить
  • «Уно»;
  • «7 на 9»;
  • «7 на 9 multi»;
  • «Трафик Джем»;
  • «Хекмек»;
  • «Математическое домино»;
  • «Умножариум»;
  • «Код фараона»;
  • «Суперфермер»;
  • «Монополия».

Мобильные приложения

С ними вы сможете довести устный счёт до автоматизма. Большинство из них предлагают решить примеры на сложение, вычитание, умножение и деление по программе младших классов. Но вы удивитесь, насколько это непросто. Особенно если задачи нужно щёлкать на время, без ручки и бумаги.

Математика: устный счёт, таблица умножения

Охватывает задания на устный счёт, которые соответствуют 1–6 классам школьной программы, включая и задачи на проценты. Позволяет тренировать скорость и качество счёта, а также настраивать сложность. Например, от простой таблицы умножения можно перейти к умножению и делению двузначных и трёхзначных чисел.

Математика в уме

Ещё один простой и понятный тренажёр устного счёта с подробной статистикой и настраиваемой сложностью.

1 001 задача для счёта в уме

В приложении используются примеры из пособия по математике «1 001 задача для умственного счёта», которое ещё в XIX веке составил учёный и педагог Сергей Рачинский.

Разработчик: Dwerty

Цена: Бесплатно

Математические хитрости

Приложение позволяет легко и ненавязчиво освоить основные математические приёмы, которые облегчают и ускоряют устный счёт. Каждый приём можно отработать в тренировочном режиме. А потом поиграть на скорость вычислений с собой или соперником.

Цена: Бесплатно

Цена: Бесплатно

Quick Brain

Цель игры — правильно решить как можно больше математических примеров за определённый промежуток времени. Тренирует знание таблицы умножения, сложение и вычитание. А ещё содержит популярный математический пазл «2 048».

Веб-сервисы

Регулярно заниматься интеллектуальной зарядкой с числами можно и на математических онлайн-тренажёрах. Выбирайте необходимый вам тип действия и уровень сложности — и вперёд, к новым интеллектуальным вершинам. Вот лишь несколько вариантов.

  • Математика.Club — тренажёр устного счёта.
  • Школа Аристова — тренажёр устного счёта (охватывает двузначные и трёхзначные числа).
  • «Развивайка» — тренировка устного счёта в пределах ста.
  • 7gy.ru — тренажёр по математике (вычисления в пределах ста).
  • Chisloboy — онлайн-игра на развитие скорости счёта.
  • kid-mama — тренажёры по математике для 0–6 классов.

Читайте также 🧠🎓😤

Как быстро складывать

Сегодня мы обращаем наше внимание на использование всего, что мы узнали, чтобы помочь вам решать математические задачи быстрее, чем вы когда-либо думали. В этой статье вы узнаете два совета, которые помогут быстро добавить… все в голове! На следующей неделе мы будем опираться на эти советы, чтобы узнать еще один способ быстрого сложения в уме.

Совет №1: Найдите пары чисел, которые складываются в 10

Вот, пожалуй, самый полезный быстрый и грязный совет, который поможет вам быстро вычислить: при добавлении списка чисел ищите пары чисел, которые добавляют к десяти.Вот что я имею в виду:

1 + 9,
2 + 8,
3 + 7,
4 + 6,
5 + 5.

Все эти пары дают в сумме десять.

Итак, когда вы добавляете группы чисел, ищите эти особые пары. Если у вас есть одна или несколько пар, их легко сложить - 10 + 10 = 20.

Как это сделать

Вот пример. Допустим, вам нужно сложить числа 1, 3, 5, 7 и 9. Вы можете просмотреть числа по порядку, складывая их одно за другим; что-то вроде:

1 + 3 = 4, затем
4 + 5 = 9, затем
9 + 7 = 16 и, наконец,
16 + 9 = 25.

Но это много, что нужно отслеживать. Помните коммутативное свойство сложения? Необязательно складывать эти числа в том порядке, в котором они вам даны. Вместо этого, если вы начнете с объединения чисел, которые складываются в десять - в данном случае 3 и 7, 9 и 1 - это оставит вас перед легкой проблемой. Вам просто нужно добавить две десятки к оставшейся цифре 5, которая ни с чем не сочеталась:

10 + 10 + 5 = 25.

Страницы

.

Как быстро сложить целые числа от 1 до n?

В последнем эпизоде ​​мы научились удивительному трюку, который можно использовать, чтобы быстро сложить все целые числа от 1 до 100. И это действительно было немалым подвигом, поскольку мы перевернули титаническую задачу выполнения 100 задач сложения - это складывает 1 + 2 + 3 + 4 +… + 100 - в милого пушистого котенка из одной задачи умножения. Хотя этот трюк, несомненно, впечатляет, это не совсем то, что вы можете использовать на вечеринках, чтобы произвести впечатление на своих друзей, поскольку они могут утверждать, что вы просто запомнили ответ.

Что может заставить вас задуматься: есть ли способ быстро вычислить сумму первых 50, 200 или, может быть, даже 1000 положительных целых чисел, вместо простого сложения первых 100 натуральных чисел? Другими словами, есть ли способ быстро вычислить сумму всех целых чисел от 1 до любого другого числа - которое мы назовем « n» - , которое ваши друзья могут вам бросить? Это был бы довольно впечатляющий трюк, правда? Что ж, как назло, способ есть ... и именно об этом мы и поговорим сегодня.

Резюме: сложение целых чисел от 1 до 100

Прежде чем мы выясним, как сложить все целые числа от 1 до n , давайте вспомним, как сложить все целые числа от 1 до 100. Ключом к этому является наш друг - ассоциативное свойство сложения, которое говорит, что вы можно складывать группы чисел в любом порядке. В прошлом мы видели, как эту свободу можно использовать, чтобы помочь вам выполнять молниеносное мысленное сложение, и теперь это же свойство снова приходит на помощь, поскольку это означает, что мы можем складывать все числа от 1 до 100 пар.

В частности, мы хотим сформировать пары, содержащие одно число с начала последовательности и одно число с конца: 1 + 100, 2 + 99, 3 + 98 и так далее. Почему это помогает? Поскольку каждая из этих пар чисел дает в сумме 101. А поскольку таких пар 50, мы можем очень быстро вычислить - не выполняя всех 100 задач сложения, - что сумма первых 100 натуральных чисел равна 50 x 101 = 5 050.

Страниц

.

c # - Как складывать числа в цикле

Переполнение стека
  1. Товары
  2. Клиенты
  3. Случаи использования
  1. Переполнение стека Общественные вопросы и ответы
  2. Команды Частные вопросы и ответы для вашей команды
  3. Предприятие
.

Смотрите также