Как научиться математике


Математика с нуля. Пошаговое изучение математики

«Математика с нуля. Пошаговое изучение математики для начинающих» – это новый проект, предназначенный для людей, которые хотят изучить математику самостоятельно с нуля.

Сразу скажем, здесь нет лёгких решений и таких заявлений как «Купи эту книгу и сдай математику на 5» или «Освой математику за 12 часов» вы тут не увидите. Математика довольно большая наука, которую следует осваивать последовательно и очень медленно.

Сайт представляет собой уроки по математике, которые упорядочены по принципу «от простого к сложному». Каждый урок затрагивает одну или несколько тем из математики. Уроки разбиты на шаги. Начинать изучение следует с первого шага, и так далее по возрастанию.

Каждый изученный урок должен быть понятным. Поэтому, не поняв одного урока, нельзя переходить к следующему, поскольку каждый урок в математике основан на понимании предыдущего. Если вы с первого раза урок не поняли – не расстраивайтесь. Некоторые люди потратили месяцы и годы, чтобы понять хотя бы одну единственную тему. Отчаяние и уныние точно не ваш путь. Читайте, изучайте, пробуйте и снова пробуйте.

Математика хорошо усваивается, когда человек самостоятельно открыв учебник, учит самогó себя. При этом вырабатывается определенная дисциплина, которая очень помогает в будущем. Если вы будете придерживаться принципа «от простого к сложному», то с удивлением обнаружите, что математика не так уж и сложна. Возможно даже она покажется вам интересной и увлекательной.

Что даст вам знание математики? Во-первых, уверенность. Математику знает не каждый, поэтому осознание того, что вы знаете хоть какую-то часть этой серьёзной науки, делает вас особенным. Во-вторых, освоив математику, вы с лёгкостью освоите другие науки и сможете мыслить гораздо шире. Знание математики позволяет овладеть такими профессиями как программист, бухгалтер, экономист. Никто не станет спорить, что эти профессии сегодня очень востребованы.

В общем, дерзай друг!

Желаем тебе удачи в изучении математики!

Новые уроки будут скоро. Оставайся с нами!

Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Как учить математику | Блог по математике ∞

Мистер Джабез ​​Уилсон сильно засмеялся. "Ну я никогда!" сказал он. «Сначала я подумал, что ты сделал что-то умное, но вижу, что в этом все-таки ничего не было».

«Я начинаю думать, Ватсон, - сказал Холмс, - что я ошибаюсь в объяснении. «Omne ignotom pro magnifico», знаете ли, и моя бедная маленькая репутация, такая как она есть, потерпит кораблекрушение, если я буду так откровенен ... »

Лига красных голов, Артур Конан Дойл

Меня недавно спросил менеджер, специализирующийся на английском языке, который испытывал трудности с количественной частью GMAT (Graduate Management Admissions Test), как изучать математику.Многие люди борются с математикой в ​​нашем все более математическом мире, начиная от балансирования своей чековой книжки и управления бюджетом на работе до понимания сложных математических моделей, которые все чаще и чаще используются в дебатах о государственной политике, таких как глобальное потепление. Эта статья представляет собой расширенную версию моего ответа.

Самое важное правило для овладения математикой: если вы заблудились (а большинство людей, включая «экспертов», часто теряются), вернитесь к тому, что вы знаете, и начните заново.Не пытайся продолжать; в большинстве случаев вы только потеряете больше. При необходимости, когда вы делаете резервную копию и начинаете заново, делайте меньшие шаги, находите и используйте более простые, более конкретные и более конкретные учебные материалы и примеры, и больше практикуйтесь на каждом шаге. Повторяйте этот процесс, делая резервные копии, упрощая и практикуясь, пока не обнаружите, что делаете успехи. В двух словах, это секрет овладения математикой для большинства людей.


Математика не похожа на английский

Многие математически ориентированные люди имеют слабые словесные навыки.Устные результаты теста SAT для студентов инженерных и научных школ, таких как Массачусетский технологический институт, Калифорнийский технологический институт и Карнеги-Меллон, обычно намного ниже, чем их впечатляющие количественные / математические оценки. И наоборот, многие люди с сильными словесными навыками плохо разбираются в математике. Я несколько необычен тем, что набрал 99-й процентиль по вербальным разделам экзаменов SAT для студентов и выпускников GRE. Я могу сравнивать изучение математики и изучение английского (и других гуманитарных наук) лучше, чем большинство других.

Математика отличается от английского и многих других гуманитарных наук. В математике каждый шаг критически зависит от каждого предыдущего шага. Обучение сложению зависит от знания чисел и умения считать. Умножение бессмысленно без мастерства сложения: трижды четыре означает «сложить три четверки вместе (4 + 4 + 4)» или «сложить четыре тройки вместе (3 + 3 + 3 + 3)». Деление определяется в терминах умножения: двенадцать, разделенное на три, - это число, которое при умножении на на три дает двенадцать (ответ - четыре).Эта критическая зависимость каждого шага от предыдущего шага или шагов обнаруживается в большинстве математических дисциплин, от базовой арифметики до алгебры и исчисления, от доказательства теорем в продвинутой чистой математике до выполнения сложных вычислений вручную или с помощью компьютера.

В английском и многих других гуманитарных науках пропуск шага - незнание определения нового слова, пропуск нескольких предложений или даже страниц в спешке и т. Д. - часто не является препятствием. Можешь продолжать. Значение неизвестного слова или пропущенных отрывков часто становится понятным из контекста.Важно получить общую картину - суть отрывка, статьи или книги, - но конкретные детали часто могут быть упущены или плохо поняты без фатальных последствий. Вы все еще можете получить пятерку в школе или хорошо работать. Конечно, лучше читать и понимать каждое слово и каждую деталь, но обычно это несущественно.

В математике, когда вы сталкиваетесь с неизвестным термином или символом, очень важно понять его значение и практическое использование, прежде чем продолжить. В противном случае в подавляющем большинстве случаев вы заблудитесь и будете теряться все больше и больше по мере продвижения.Если какой-то один шаг в вычислении, выводе формулы или доказательстве теоремы не имеет смысла, вам нужно остановиться, сделать резервную копию, если необходимо, и освоить его, прежде чем продолжить. В противном случае вы обычно заблудитесь. Это фундаментальное качественное различие между математикой и английским (и многими другими гуманитарными науками).


Не сравнивайте себя с Prodigies

Популярный образ математиков и математиков состоит в том, что математика сродни магии, а математики - антисоциальные чудаки, рожденные с магической силой, которая позволяет им решать дифференциальные уравнения в колыбели - никакой практики или тяжелой работы не требуется.В фильме Good Will Hunting (1997) Мэтт Дэймон - математический гений-самоучка из бедного ирландского района Бостона и уборщик Массачусетского технологического института, который решает математические задачи мирового класса, оставленные на классных классных досках во время уборки. В популярной комедии « Теория большого взрыва » Джим Парсонс играет Шелдона Купера, сумасшедшего физика-теоретика с предполагаемыми симптомами синдрома Аспергера, который, по всей видимости, в подростковом возрасте опубликовал революционное исследование.В фильме 1985 года Настоящий гений , действие которого происходит в вымышленном университете, очень слабо основанном на Калтехе, Габриэль Джаррет играет Митча Тейлора, пятнадцатилетнего вундеркинда-самоучки, у которого ужасные отношения со своими неподдерживающими родителями, который, как показано, проводит прорывное исследование для ЦРУ, будучи (15-летним) первокурсником в Pacific Tech. Еще много примеров можно привести в кино, на телевидении и в массовой культуре.

Два очка. Во-первых, эти популярные, в основном вымышленные изображения вундеркиндов математики и науки сильно преувеличены по сравнению с настоящими вундеркиндами, настолько впечатляющими и устрашающими, какими иногда могут быть настоящие вундеркинды.Вымышленные вундеркинды, такие как «Уилл Хантинг» Мэтта Дэймона, часто изображаются как возникающие в результате волшебства или божественного вмешательства в весьма неожиданных семьях и обстоятельствах. Напротив, наиболее распространенным фоном для вундеркиндов математики или естественных наук является академическая семья - папа, мама или оба родителя - профессора - или аналогичная семейная среда, богатая математикой и естественными науками. Многие вундеркинды, которых я встретил в Калифорнийском технологическом институте или других учреждениях, имеют академическое или иное богатое семейное прошлое. Ни одного дворника из MIT 🙂.

Вундеркинды также часто изображаются совершившими крупные научные или технологические прорывы подростками . Это очень редко в реальном мире. Это правда, что люди в возрасте от двадцати лет совершили немало крупных научных и технологических открытий, но подростки встречаются довольно редко. Даже Фило Фарнсворт, которому часто приписывают изобретение электронного телевидения в четырнадцать лет, не имел рабочего прототипа электронного телевизора до двадцати лет.

Большинство настоящих математических вундеркиндов, как и большинство или все шахматные вундеркинды, по-видимому, достигают своих выдающихся результатов благодаря обширному обучению и практике, даже если у них есть врожденные способности к математике. Любопытно, что многие настоящие вундеркинды не достигают тех достижений, на которые можно было бы рассчитывать в дальнейшей жизни.

Во-вторых, настоящие чудеса очень редки. Несмотря на изображение в Real Genius , большинство студентов Калифорнийского технологического института в 1980-х годах не были вундеркиндами из реального мира, не говоря уже о таких преувеличенных вымышленных вундеркиндах, как Митч Тейлор и Крис Найт (которых играет Вэл Килмер).Исторически сложилось так, что особенно до трансформации математики и естественных наук во время и сразу после Второй мировой войны, что затруднило дальнейшую карьеру в математике или естественных науках без очень высоких количественных оценок на стандартных тестах и ​​экзаменах, многих достижений в математике и высших математических науках. были сделаны не-вундеркиндами. Некоторые из его учителей называли математика Германа Грассмана «медлительным». Минковский назвал Эйнштейна «этой ленивой собакой». Грассманн и Эйнштейн являются примерами «поздно расцветающих» в математике и физике.

Изучая математику, не сравнивайте себя с вундеркиндами, особенно вундеркиндами. Большинство людей, разбирающихся в математике, не были вундеркиндами.


Как изучать математику

Опять же, чтобы выучить математику, если вы заблудились, что является обычным и естественным, вернитесь к тому, что вы знаете, убедитесь, что вы действительно знаете это, попрактикуйтесь в том, что знаете, а затем снова двигайтесь вперед. Возможно, вам придется повторить это много раз.

Иногда шаг может быть трудным.Если возможно, постарайтесь разбить сложный шаг на более простые. Изучите каждый более простой шаг последовательно, по одному. Учебники математики и другие учебные материалы иногда пропускают ключевые шаги, представляя два или более шага как один шаг, предполагая, что это очевидно для ученика (часто это не так) или будет объяснено далее в классе (часто это не так). Следовательно, помните, что один сбивающий с толку шаг может скрыть несколько шагов. Если какой-то шаг сбивает с толку, попробуйте найти учителя, другого ученика или учебные материалы, которые могут объяснить этот шаг более ясно и более подробно.

Математика является абстрактным предметом и страдает излишней абстракцией в учебных материалах и преподавании. Печально известный пример этого - обучающий эксперимент «Новая математика» 1960-х годов.

Некоторые из вас, у кого есть маленькие дети, возможно, оказались в затруднительном положении из-за невозможности выполнять домашнее задание по арифметике своего ребенка из-за нынешней революции в преподавании математики, известной как новая математика. Итак, как общественное служение здесь сегодня вечером, я подумал, что проведу краткий урок Новой математики.Сегодня мы поговорим о вычитании. Это первая комната, в которой я работал какое-то время, в которой не было классной доски, поэтому нам придется прибегнуть к более примитивным наглядным пособиям, как говорится в «ed biz». Рассмотрим следующую задачу на вычитание, которую я поставлю здесь: 342 - 173.

А теперь вспомните, как мы это делали. три из двух - девять; носите с собой одну, и если вам меньше 35 лет или вы ходили в частную школу, вы говорите, что семь из трех - шесть, но если вам больше 35 лет и вы ходили в государственную школу, вы говорите, что восемь из четырех - шесть; возьмите один, чтобы у нас было 169, но в новом подходе, как вы знаете, важно понять, что вы делаете, а не получить правильный ответ.Вот как они это делают сейчас ...

Том Лерер, Введение в новую математику (Песня)

Правило (для большинства людей) в математике: если шаг оказывается слишком абстрактным, ищите более конкретные, конкретные учебные материалы и примеры. Если «шары в урнах» (пресловутый штамп вероятности и статистики) слишком абстрактны для вас, поищите объяснения и примеры с «печеньями в банках» или что-то еще более конкретное и актуальное для вас. Что-то, что вы можете легко визуализировать или даже взять с кухни и использовать для решения проблемы.

Чем проще, конкретнее и конкретнее вы можете сделать каждый шаг в изучении математики, тем легче будет для большинства людей. Практикуйтесь, практикуйтесь, практикуйтесь, пока не овладеете шагом. Чтобы что-то запомнить, обычно требуется как минимум три отработанных примера или других повторений. Часто для полного овладения мастерством требуется гораздо больше повторений с последующим периодическим использованием. Тогда и только тогда переходите к следующему шагу в последовательности.

Начните с простого, конкретного и особенного.Со временем появятся абстрактные и более сложные. Не начинайте с абстрактного или сложного. Если что-то слишком абстрактное или сложное для вас, сделайте это конкретным и, если возможно, упростите. Поищите в библиотеке, магазине подержанных книг, в Интернете везде, где только возможно, более простые и конкретные учебные материалы и примеры, которые подходят вам. Практика, практика, практика. Сегодня многие учебные пособия, видео лекций и другие материалы (самого разного качества) доступны бесплатно в Интернете.


Опасности питья из пожарного шланга

Критическая зависимость каждого шага от усвоения предыдущего шага в изучении математики имеет серьезные последствия для образования.Когда много месяцев назад я подал заявление в Калифорнийский технологический институт, в рекламных материалах университета была фраза, в которой обучение в Калтехе сравнивалось с «питьем из пожарного шланга». Такая риторика нравится молодым людям, особенно молодым мужчинам. Конечно, никто в здравом уме не станет пить из пожарного шланга. В то время мне этого не приходило в голову.

В 1980-х годах, а может быть, и по сей день, в Калифорнийском технологическом институте был ошеломляющий показатель отсева - около трети его самых умных студентов.

Вскоре стало очевидно, что большая часть учений известных исследователей была довольно посредственной. Это не очень хорошо сравнивалось с преподаванием математики и естествознания, которое я испытал ранее. В то время мне не хватало адекватного понимания того, как успешно преподаются математические и естественные предметы, и я не научился объяснять, что профессора делали неправильно. Следует отметить, что успех в качестве исследователя или ученого, по-видимому, не связан со способностью и навыками фактически преподавать в своей области 🙂.

В чем была проблема? В общем, профессора торопливо просматривали материал, особенно многие фундаментальные темы и концепции, которые они считали основными и очевидными, а иногда даже полностью их пропускали. Они часто задавали чрезвычайно сложные, сложные, иногда «трюковые» задачи, такие как вводных примеров, домашних заданий и экзаменационных задач. Задачи могли быть интеллектуально увлекательными для исследователя с многолетним опытом, но совершенно неуместными для студентов, изучающих математику или физику.

Я все еще хорошо помню, как преподаватель второго курса математики бормотал о «линейных функциях» и «линейных операторах», пока один разочарованный студент наконец не заговорил и не спросил: «Что такое линейное?» Профессор действительно дал довольно хороший ответ на вопрос, что означает линейность в математике, но дело в том, что эта идея была так принята как должное известными математическими факультетами, что они даже не потрудились преподать ее во вводной части. классы. 🙂

Оглядываясь назад, можно сказать, что большинство студентов Калифорнийского технологического института были из школ с отличными математическими и естественными , преподававшими , которые следовали многим правилам, изложенным в этой статье.В классах было достаточно простых примеров и повторений, чтобы мотивированный студент усвоил и усвоил материал. Фактически, во многих случаях очень одаренные студенты, поступившие в Калифорнийский технологический институт, вероятно, чувствовали, что могут идти быстрее, отсюда и привлекательность «пить из шланга».

Урок для любого, кто изучает математику, состоит в том, чтобы убедиться, что любой курс или учебная программа, которые вы изучаете, проходят достаточно медленно, выделяя время, чтобы представить каждый шаг в простой и понятной форме, чтобы вы могли полностью усвоить материал - выучите и освоите каждый шаг перед переход к следующему шагу.Это не должно быть «питье из пожарного шланга». Скорее, вы должны почувствовать, что можете пойти немного быстрее. Не в десять раз быстрее, но должна быть подушка, больше времени и повторений, чем абсолютно необходимо, на случай, если у вас возникнут трудности с обучением конкретному шагу, вы заболеете, расстанетесь с девушкой / парнем или произойдет что-то еще. Реальная жизнь полна неожиданных неудач.


Заключение

Каждый шаг в изучении математики критически зависит от изучения и усвоения предыдущего шага или шагов.Самое важное правило для овладения математикой: если вы заблудились (а большинство людей, включая «экспертов», часто теряются), вернитесь к тому, что вы знаете, и начните сначала. Не пытайся продолжать; в большинстве случаев вы только потеряете больше. При необходимости, когда вы делаете резервную копию и начинаете заново, делайте меньшие шаги, находите и используйте более простые, более конкретные и более конкретные учебные материалы и примеры, и больше практикуйтесь на каждом шаге. Повторяйте этот процесс, делая резервные копии, упрощая и практикуясь, пока не обнаружите, что делаете успехи.Не пытайтесь «пить из шланга». Потерпи. Не торопитесь, изучите и осваивайте каждый шаг последовательно. В двух словах, это секрет овладения математикой для большинства людей.

© 2014 Джон Ф. Макгоуэн

Об авторе

Джон Ф. Макгоуэн, доктор философии решает задачи с использованием математического и математического программного обеспечения, включая разработку технологий сжатия видео и распознавания речи. Он имеет обширный опыт разработки программного обеспечения на C, C ++, Visual Basic, Mathematica, MATLAB и многих других языках программирования.Он, вероятно, наиболее известен своим обзором AVI, часто задаваемыми вопросами в Интернете о формате файлов Microsoft AVI (Audio Video Interleave). Он работал подрядчиком в исследовательском центре NASA Ames Research Center, занимающимся исследованиями и разработкой алгоритмов и технологий обработки изображений и видео, а также приглашенным научным сотрудником в HP Labs, работающим над приложениями компьютерного зрения для мобильных устройств. Он опубликовал статьи о происхождении и эволюции жизни, исследовании Марса (в ожидании открытия метана на Марсе) и дешевом доступе в космос.Имеет докторскую степень. по физике из Университета Иллинойса в Урбана-Шампейн и степень бакалавра наук по физике Калифорнийского технологического института (Калифорнийский технологический институт).

Получите больше подобных вещей

Получайте интересные математические обновления прямо в свой почтовый ящик.

Спасибо за подписку. Пожалуйста, проверьте свою электронную почту, чтобы подтвердить подписку.

Что-то пошло не так.

.

Изучение математики

Однажды, когда я учился в колледже, я решил пойти на свой первый вводный курс по доказательству. Я был так взволнован. "Это оно!" Я подумал: «Теперь я научусь думать как математик».

Видите ли, в течение долгого времени мое математическое воспитание было очень ... не математическим. Когда я учился в старшей школе и хорошо учился в колледже, я очень хорошо умел быть роботом. Запомните эту формулу? Нет проблем. Вставить эти цифры? Ты понял. Критически и глубоко подумать об идеях, которые передает математика? Нет.

Это было не потому, что я не хотел, чтобы глубоко задумался. Я просто не знал, что есть что думать о . Я думал, что математика - это искусство манипулирования символами и быстрых арифметических вычислений. Я плохо разбираюсь в этих вещах и никогда не понимал, почему люди так поступают. Но я отлично умел следовать указаниям. Поэтому, когда учителя говорили: «Выполните это вычисление», я делал это, и я делал это хорошо. Я просто не знал , что делал .

К тому времени, когда я записался на курс вводных проверок, я был полностью осведомлен о своих роботизированных симптомах и их вредных побочных эффектах. К тому времени я знал, что математика - это не просто причудливые иероглифы, и что даже люди, не суперкомпьютеры, могут по-прежнему быть математиками, потому что - вы в это поверите? - «математик» не является синонимом «человеческого калькулятора. " Есть даже - поймите - идей по математике, и это то, к чему я мог бы относиться. («Я знаю, как придумывать идеи, - предположил я однажды, - так что, может быть, я тоже могу заниматься математикой!»)

Один из моих преподавателей в колледже сыграл важную роль в том, чтобы помочь мне избавиться от синдрома робота.Однажды он сказал мне: «Чтобы полностью понять часть математики, вы должны с ней бороться. Вы должны много работать, чтобы полностью понять каждый ее аспект». Затем он вытащил свой сотовый телефон, начал вращать его и сказал: «Это как этот телефон. Если вы хотите понять все о нем, вы должны проанализировать его со всех сторон. Вы должны знать, где каждая кнопка, где Каждый гребень там, где находится каждый порт. Вы должны открыть его и посмотреть, как работает схема. Вы должны изучить его - на самом деле изучите его - чтобы развить глубокое понимание.«

» И это, - продолжил он, - это то, на что похоже изучение математики.

Я был поражен. «Вау, - подумал я, - я хочу понимать математику как . Я хочу ясно видеть вещи ». Но у роботов нет глаз. Они вообще не могут видеть, тем более ясно. (Да, есть ИИ, но вы понимаете, о чем я). Так что это было еще большей мотивацией для

Как бы то ни было, на днях я нашел свой старый учебник по вводным доказательствам. Открыв первую страницу, я был удивлен, увидев, что сделал заметки из этого разговора! Я написал их как постоянное напоминание для моего недавно активированного математического мозга, когда он начал изучать основы доказательства.Я так отчетливо помню тот день, и, увидев записи, я вспомнил целый поток воспоминаний.

В третьей строке я написал: "... спросите себя ... , что у них всех общего?" Я подозреваю, что это может быть источником моего увлечения теорией категорий, объединяющим языком математики. Фактически, впервые я задумался о будущем в математике, когда узнал, что математику можно использовать для определения того, когда два, казалось бы, разных явления в природе управляются одними и теми же основополагающими принципами.Я был - и остаюсь - очарован этой идеей.


Я думаю, что эта перспектива - зная, что нужно бороться, бороться, бороться с математикой, чтобы увидеть ее должным образом, усвоить ее, выявить основополагающие идеи - была самым важным, что я узнал в том году. Да, я также узнал о таблицах истинности и о том, как написать доказательство от противоречия, но, что более важно, я узнал, как не быть роботом. Я изучил как изучать математику .И за это я благодарен.

Примечание для читателя

Однако оказывается, что изучение того, как учить , не обязательно означает, что вы выучите быстрее. Я до сих пор не умею выталкивать символы или вычислять скорость, но мои цели как студента давно изменились. Я хочу хорошо разбираться в математике. Я хочу видеть это ясно. Это требует работы, а работа требует времени.

То, что также требует времени, - это поиск правильных слов, которые можно использовать при обмене математикой с другими! Это то, чем я люблю заниматься, и это одна из причин, почему я начал Math4ma несколько лет назад.Но верные читатели этого блога заметят, что я публикую нечасто. Это потому, что я все еще применяю на практике то, что упомянуто в этом посте.

Мне нравится, как Крис Олах говорит: «Я хочу ясно понимать вещи и хорошо их объяснять». Ясное понимание вещей - долгий процесс, как и поиск способа их хорошо объяснить. И все же это мое глубокое желание. Более того, математика, которой я хочу поделиться в настоящее время, имеет иную природу, чем небольшие кусочки, которыми я открыл этот блог.Теперь процесс дистилляции стал немного длиннее. В частности, в этом году я был занят несколькими проектами, в том числе моим маленьким буклетом и, что наиболее важно, докторской диссертацией ( в процессе), а также другими математическими усилиями. У меня не было много времени на ведение блога.

Но я подозреваю, что мой перерыв продлится недолго. Я не забыл, что я начал, но никогда не заканчивал серию о (со) ограничениях. Я хочу вернуться к этому в ближайшее время. У меня также есть несколько черновиков, которые я планирую выпускать очень медленно.Между тем, я просто хотел сказать вам быстрое «спасибо» за ваше терпение и за то, что вы все еще посещаете Math4ma, даже когда он находится на тихой стороне.

Спасибо!

.

Мои 9 шагов к самообучению

Если вы понимаете простой английский и имеете доступ к Интернету, то вы определенно можете изучать математику самостоятельно .

После того, как вы реализуете все, что описано в этом руководстве, вы поймете, что нет никого, кто мог бы научить вас быстрее и лучше, чем вы сами. (Особенно если использовать Anki!)

Просто небольшое предупреждение: хотя я сказал, что может сделать любой , я на 100% уверен, что не все, .

Вообще-то, это немного неудобно, особенно если вы делаете это впервые. (Но очень полезно.)

В этом посте вы точно узнаете 9-шаговый подход, который я использовал, чтобы научить себя математике, не полагаясь на кого-то, кто меня научит.

  • Образ мышления №1, который многие упускают из виду при самостоятельном изучении математики
  • Лучшие ресурсы для самостоятельного изучения математики
  • Как вывести свои математические навыки на новый уровень

Давайте начнем.

Можете ли вы действительно самостоятельно изучать математику?

Во-первых, если вы думаете, что вы не «математик» (как, черт возьми, выглядит человек, занимающийся математикой), вы можете подумать, что вам понадобится кто-то другой, чтобы научить вас математике в классе.

Но разве это не то же самое, что использование онлайн-инструментов? Главное здесь - просто создать свою собственную структуру, подобную программам, которые вы используете в школе.

Благодаря обилию бесплатной информации, лекций, учебных программ, электронных книг и MOOCS вы, безусловно, можете довольно легко самостоятельно изучать математику, как если бы вы были в колледже.

Самое приятное то, что вы делаете это в своем собственном темпе .

Никаких строгих графиков, только самоотдача.

Однако вы должны думать по-другому, если хотите пожинать плоды.

То есть признать , что умственные усилия, которые вы тратите на практику по математической теме, - это цена, которую вы платите за то, чтобы упростить будущие математические навыки .

Или, что более уместно, это цена, которую вы платите, чтобы не усложнять обучение для себя в будущем.

Математика - это все о накопленных знаниях.

В отличие от школы, вы будете чувствовать себя дерьмом, потому что вы не меняете темы относительно времени - теперь вы меняете темы в зависимости от , насколько быстро вы овладеваете навыком .

Шаги к самостоятельному изучению математики

Я собираюсь ненадолго прервать вас, чтобы кое-что прояснить: я создал это руководство, чтобы помочь людям, которые чувствуют, что у них отстают свои математические навыки и хотят его пересмотреть, или людям, которые просто хотят изучать математику на своих владеть по какой-то причине.

Каждый пример, который я вам дам, всего лишь пример, который поможет вам понять то, что я пытаюсь донести. Вы все еще должны применить эти шаги в своей ситуации.

Шаг 1. Сначала определите, где вы хотите закончить

Математика строится сама по себе, поэтому, если вы хотите выучить предмет, например, математический анализ, всегда спрашивайте:

Какие предметы являются предпосылками для этого предмета?

В своем собственном исследовании я часто задаю себе вопрос, основанный на «навыках», а не актуальный.

«Какие навыки мне нужно изучить, чтобы стать лучше в этом?»

В конце концов, решение проблем - это навык. Вы не сможете лучше решать проблемы, если у вас нет инструментов; индивидуальное владение необходимыми темами.

Это подводит меня к следующему пункту.

Шаг 2. Определите, с чего начать, очевидно,

Теперь, когда вы определили конечную тему, пора решить, с какой общей темы начать.

Например, Calculus и его приложения станут проще, если у вас есть знания в области аналитической геометрии и тригонометрии.

Но в аналитическую геометрию включены некоторые элементы тригонометрии.

Итак, вы можете начать с тригонометрии.

Однако, если вы не знаете, «что является предпосылкой для чего», я настоятельно рекомендую вам найти учебную программу в Интернете.

Вот хороший план для тех, кто изучает математику для науки о данных.

Шаг 3. Найдите программу, чтобы избежать излишней глубины

Если вы заблудились, зайдите на Google Карты.

Итак, что вы делаете, когда у вас нет дорожной карты или последовательности для изучения математики?

Используйте уже разработанный Syllabus. Они станут дорожной картой к вашему успеху в самообучении.

Как я уже упоминал ранее, их легко найти в Интернете.

Я имею в виду, что всего один поиск в Google даст вам то, что вы ищете.

Или вы можете просто просмотреть ресурсы своего университета и проверить планы по математике.

Шаг 4.Соберите ссылки, руководства по решениям и книги типа «Решенные проблемы»

Обычное обучение математике требует, чтобы вы ходили в школу, посещали занятия, выполняли домашнее задание, а затем ждали, пока оно будет проверено, прежде чем завершать цикл обратной связи.

Я говорю, что это очень неэффективно.

Когда есть руководства по решениям или книги типа «Решенные проблемы», лучше использовать их бок о бок с вашей собственной рутиной решения проблем.

В этом случае Мне нравится серия книг «Очерки Шаума».

Проблемы довольно сложные, обсуждения краткие и прямо по делу, но вы, безусловно, научитесь решать проблемы ЛЕГКО.

Для ясности, я не говорю, что вам следует искать решения каждый раз, когда вы решаете проблему, но , когда вы застряли, вы можете легко выйти и фактически быстрее изучить решения.

Этот тесный цикл обратной связи позволит нам изучать математику БЫСТРО и в нашем СОБСТВЕННОМ темпе.

«Что делать, если я не понимаю материала?»

Либо вы не освоили предварительные условия (или совсем не освоили), либо используете слишком сложную книгу.

Наконец, здравый смысл подсказывает, что это руководство не является «окончательным» самостоятельного изучения математики. Вы всегда можете проконсультироваться с другими, когда действительно застряли, даже если у вас есть руководство по решению (возможно, в нем есть опечатка или что-то в этом роде).

Шаг 5. Сделайте ставку на глубокое концептуальное обучение

Это вызвано поднятым выше вопросом, который заключается в использовании руководств по решениям для изучения математики для создания быстрого цикла обратной связи.

Однако некоторые студенты неправильно понимают его.

Они чувствуют, что когда они могут запомнить, как решается сложная проблема, это хорошо.

Это БОЛЬШАЯ ошибка - запоминать что-то, чего вы не понимаете.

Соответственно, это тоже БОЛЬШАЯ ошибка - просто понимать что-то, но не практиковать это.

Узнайте, ПОЧЕМУ шаги работают, потому что если вы сделаете это, вы узнаете один раз и решите многие.

Шаг 6.Поместите ссылки на ресурсы в одном месте

Поскольку вы собираетесь в основном заниматься самообучением с использованием цифровых ресурсов, удобно собрать их все в одном месте.

Возможно, сделайте их домашней страницей вашего браузера.

Сделайте ярлык или что-то в этом роде.

Дело в том, что нужно НАСТОЛЬКО упростить вам доступ к своим ресурсам, чтобы у вас не было проблем, когда вы хотите учиться самостоятельно.

Это облегчает формирование ваших учебных привычек - что всегда лучше в долгосрочной перспективе.

Шаг 7. Выделите время ОБЕИМ для изучения и решения проблем

Как я уже упоминал ранее, простого понимания недостаточно.

Вы должны практиковать то, что вы узнали.

Точно так же, как новичок не может играть на пианино сразу после того, как кто-то хороший научит его этому, так и изучение новых вещей по математике не происходит в моменты «ага».

Обучение происходит, когда вы вспоминаете информацию из головы, а не когда пытаетесь что-то туда вложить.

Итак, помимо вашего «поглощающего» времени, выделите время для практики.

Шаг 8. Развивайте глубокую работу

Во время практики важно, чтобы вы не отвлекались.

Работа без внутренних и внешних отвлекающих факторов и сознательное сосредоточение на выполняемой задаче, также известной как «Глубокая работа», улучшает взаимодействие нейронов при активации.

Это происходит потому, что оболочка под названием миелин образуется всякий раз, когда вы извлекаете информацию или практикуете навык.

Когда ваше внимание направлено на практику решения проблем, вы эффективно говорите своему мозгу, что ТОЛЬКО те нейроны, которые активируются во время решения проблем, должны быть покрыты миелином.

Однако, когда вы отвлекаетесь, это происходит плохо, и обучающие блоки формируются не очень хорошо.

Шаг 9. Избегайте «Практика, практика, практика», делайте это вместо этого

Это, наверное, самый распространенный совет, который дают ученикам, которые спрашивают «как мне улучшить математику?».

Нам не нужно больше времени для практики. Нам просто нужно практиковаться лучше .

Практика, безусловно, жизненно важна, но есть два вида практики: Непродуктивная и производительная практика.

Если вы делаете все в течение длительного периода времени, нечасто в течение недели, и просто повторяете одну и ту же задачу несколько раз, пока не «поймете», прежде чем переходить к следующей, то это непродуктивная практика.

Производственная практика - разумная практика.

Вот как это сделать. Два ЛЕГКИХ шага.

  • Распространяйте свою практику в течение дня и в течение недели
  • Когда вы получите базовое представление о концепции, не отвечайте на несколько проблем одним и тем же решением; ответьте на несколько несвязанных задач. (Чередование)

Делая это, вы экономите ТОННУ времени и энергии на изучении математики.

Один из простых способов сделать это - использовать Anki , но вам придется проявить немного изобретательности при создании своих колод и настроек.

Ключ - изучить основы, поэтому я создал бесплатный курс.

Кто сказал, что изучение математики должно быть утомительным и трудоемким?

Ресурсы для самостоятельного изучения математики

Пока я работал над этой статьей, я нашел несколько ресурсов, которые, как мне кажется, наверняка помогут вам в вашем поиске самообучения.

Вот некоторые из лучших, которые я нашел:

Руководство:

Как научиться математике, Скотт Янг

Скотт Янг - это человек .

Когда дело доходит до самообучения, он определенно лучший парень.

В конце концов, он закончил 4-летний курс CS в Массачусетском технологическом институте всего за 12 месяцев, так что я почти уверен, что он знает, о чем говорит.

Учебники:

MOOCS:

Как узнать больше по высшей математике (БЕСПЛАТНЫЕ ресурсы)

Если вы хотите поднять свои знания математики на новый уровень, вот несколько полезных ссылок.

Я не могу научить вас сам, поэтому вот лучшие ресурсы, которые обсуждают эту тему:

Если вам понравился мой контент, вы можете поделиться им:

.

Изучение математики

Зачем изучать математику?

Технологии повсюду вокруг нас, и вам нужна математика, чтобы овладеть ими!

На самом деле для большинства высокооплачиваемых должностей требуются хорошие математические навыки:

  • Врачи
  • Ветеринарные
  • Инженеры
  • Ученые
  • Разработчики программного обеспечения
  • Маркетинговые аналитики
  • Финансовые сотрудники
  • Менеджеры по инвестициям
  • и более...

И математика - это не только числа, это еще и модели!

Значит, для таких профессий, как мода и дизайн интерьера, нужны математические навыки.

Математика пригодится и в повседневной жизни:

  • Вложение денег (процентные ставки, прибыль и т. Д.)
  • Сметная стоимость
  • Шоппинг (неужели выгодно?)
  • Понимание компьютеров
  • Проектирование комнат и садов
  • Планирование поездок

Математика также улучшает наши умственные способности, поскольку учит нас логическому мышлению.

И вообще, это просто забава: какой еще предмет о решении головоломок?

Как быть экспертом

Есть два основных этапа:

Получить информацию ... прочитать, послушать учителя, посмотреть видео.

Используйте информацию ... набросайте ее, подумайте, ответьте на вопросы.

Использование - это так важно! Ответы на вопросы помогут вам систематизировать идеи в уме *.

Постарайтесь выполнять около 1 часа практики самостоятельно каждый день *

Как читать по математике

Математика говорит о многом в коротком пространстве .

Пример на английском языке: «Мы не знаем, сколько стоят степлеры или лотки, но знаем, что офис-менеджер купил 15 степлеров и 11 лотков на общую сумму 73 доллара».

А вот по математике: 15 с + 11 = 73

Так что хорошо перечитывать, ходить взад и вперед и играть с идеями.

Чтение по математике отличается от чтения английского

Прочтите, подумайте об этом, прочтите еще раз, запишите или набросайте, а затем используйте (отвечая на вопросы), все это помогает проникнуть в ваши мысли.

Пример: преобразование Цельсия в Фаренгейт

° F = (° C × 9 / 5 ) + 32

  • Прочтите его сначала, чтобы увидеть, что с одной стороны ° F (что означает по Фаренгейту), а с другой стороны - ° C, (Цельсия).
  • Теперь просмотрите это снова и посмотрите, что ° C умножено на 9/5, и подумайте: «Интересно, почему это делается? Почему 9/5?»
  • Тогда обратите внимание, что добавлено 32 ... почему это так?
  • Может быть, вы могли бы сделать эскиз (как показано ниже)
  • Затем используйте его самостоятельно, сделайте несколько преобразований и посмотрите, как это работает

Сделайте наброски

Это действительно помогает понять, когда вы зарисовываете , что вы изучаете *.

Делайте большие и смелые наброски с большим количеством этикеток и пометок.

Как этот набросок о градусах Цельсия и Фаренгейта:

Наброски также очень полезны при ответе на вопросы.

Работать аккуратно

Аккуратная работа помогает яснее мыслить
, а также дает хорошие умственные навыки.

Имейте гордость за свою работу, даже если никто другой ее не увидит.

Не торопитесь!

Математика - это не чтение страниц ... это построение концепций в уме.

Так что не думайте: «Я прочитал сегодня 2 страницы», вместо этого думайте: «Теперь я лучше понимаю графики».

Важно изучать одну идею за раз, убедиться, что вы ее понимаете, и выполнять множество упражнений, чтобы стать экспертом.

Важно: если вы пропустите раздел, остальное может не иметь смысла.

Вы запутаетесь, расстроитесь и начнете ненавидеть эту тему.

Лекарство?

  • Вернуться туда, где это имело смысл,
  • затем снова плавно двигаться вперед,
  • делать много практических вещей например решать вопросы и делать наброски

И вы скоро "вернетесь"

Практика, Практика, Практика

У меня много вопросов.

Вот почему мы разработали базу данных вопросов по математике.

Если вам нужно сдать экзамен, найдите прошлые экзамены и выполните их *.

Читал лот

Возьмите несколько книг и прочтите их. Проведите время на математических сайтах (например, на этом!) И присоединитесь к форуму (например, на форуме Math is Fun).

Придумывайте свои собственные способы

У вас есть свой собственный стиль обучения .

Не просто следуйте инструкциям, которые вам показывают, попробуйте свои собственные идеи!

Играйте с идеями, которые вы изучаете.

И попробуйте прочитать на одну и ту же тему из разных мест, вы можете найти такие, которые имеют для вас гораздо больше смысла.

Ваш разум - удивительный и уникальный инструмент, и вы хотите использовать его наилучшим образом.

И изучение математики - хороший способ улучшить ее!

Все об идеях

Важнее знать идеи , чем запоминать формулы.

Если вы знаете, как работает , вы всегда можете воссоздать формулы, когда они вам понадобятся.И вы также сможете делать более умные вещи, используя свои идеи.

* Библиография:

  • Рисование «неотъемлемая часть» обучения естественным наукам https://www.nottingham.ac.uk/news/pressreleases/2011/august/drawing-integral-to-science-learning.aspx
  • Практика поиска дает больше знаний, чем тщательное изучение с концептуальным картированием (Джеффри Д. Карпике и Дженелл Р. Блант) Наука 20 января 2011 г .: 1199327
  • Тестирование улучшает память https: // www.ologicalscience.org/index.php/news/releases/testing-improves-memory.html
  • Практическое тестирование защищает память от стресса
    https://now.tufts.edu/news-releases/practice-testing-protects-memory-against-stress
  • Сколько домашнего задания по математике, естествознанию - слишком много?
    https://www.apa.org/news/press/releases/2015/03/math-science-homework.aspx
  • Худшие и лучшие советы и привычки учебы на основе психологических исследований
    https: // cognitiontoday.ru / 2019/04 / худшие-и-лучшие-советы-исследования-привычки-от-психологического-исследования-как-к /
  • Х. Зигмундссон, Р. К. Дж. Полман и Х. Лорос (2013) Изучение индивидуальных различий в математических навыках детей: корреляционный и размерный подход . Психологические отчеты: Том 113, выпуск, стр. 23-30. DOI: 10.2466 / 04.10.PR0.113x12z2 https://www.eurekalert.org/pub_releases/2013-12/nuos-nmg121313.php
.

Смотрите также