Как научиться решать примеры по математике
Математика с нуля. Пошаговое изучение математики
«Математика с нуля. Пошаговое изучение математики для начинающих» – это новый проект, предназначенный для людей, которые хотят изучить математику самостоятельно с нуля.
Сразу скажем, здесь нет лёгких решений и таких заявлений как «Купи эту книгу и сдай математику на 5» или «Освой математику за 12 часов» вы тут не увидите. Математика довольно большая наука, которую следует осваивать последовательно и очень медленно.
Сайт представляет собой уроки по математике, которые упорядочены по принципу «от простого к сложному». Каждый урок затрагивает одну или несколько тем из математики. Уроки разбиты на шаги. Начинать изучение следует с первого шага, и так далее по возрастанию.
Каждый изученный урок должен быть понятным. Поэтому, не поняв одного урока, нельзя переходить к следующему, поскольку каждый урок в математике основан на понимании предыдущего. Если вы с первого раза урок не поняли – не расстраивайтесь. Некоторые люди потратили месяцы и годы, чтобы понять хотя бы одну единственную тему. Отчаяние и уныние точно не ваш путь. Читайте, изучайте, пробуйте и снова пробуйте.
Математика хорошо усваивается, когда человек самостоятельно открыв учебник, учит самогó себя. При этом вырабатывается определенная дисциплина, которая очень помогает в будущем. Если вы будете придерживаться принципа «от простого к сложному», то с удивлением обнаружите, что математика не так уж и сложна. Возможно даже она покажется вам интересной и увлекательной.
Что даст вам знание математики? Во-первых, уверенность. Математику знает не каждый, поэтому осознание того, что вы знаете хоть какую-то часть этой серьёзной науки, делает вас особенным. Во-вторых, освоив математику, вы с лёгкостью освоите другие науки и сможете мыслить гораздо шире. Знание математики позволяет овладеть такими профессиями как программист, бухгалтер, экономист. Никто не станет спорить, что эти профессии сегодня очень востребованы.
В общем, дерзай друг!
Желаем тебе удачи в изучении математики!
Новые уроки будут скоро. Оставайся с нами!
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках
Как учить математику | Блог по математике ∞
Мистер Джабез Уилсон сильно засмеялся. "Ну я никогда!" сказал он. «Сначала я подумал, что ты сделал что-то умное, но вижу, что в этом все-таки ничего не было».
«Я начинаю думать, Ватсон, - сказал Холмс, - что я ошибаюсь в объяснении. «Omne ignotom pro magnifico», знаете ли, и моя бедная маленькая репутация, такая как она есть, потерпит кораблекрушение, если я буду так откровенен ... »
Лига красных голов, Артур Конан Дойл
Меня недавно спросил менеджер, специализирующийся на английском языке, который испытывал трудности с количественной частью GMAT (Graduate Management Admissions Test), как изучать математику.Многие люди борются с математикой в нашем все более математическом мире, начиная от балансирования своей чековой книжки и управления бюджетом на работе до понимания заумных математических моделей, которые все чаще и чаще используются в дебатах о государственной политике, таких как глобальное потепление. Эта статья представляет собой расширенную версию моего ответа.
Самое важное правило для овладения математикой: если вы заблудились (а большинство людей, включая «экспертов», часто теряются), вернитесь к тому, что вы знаете, и начните заново.Не пытайся продолжать; в большинстве случаев вы только потеряете больше. При необходимости, когда вы делаете резервную копию и начинаете заново, делайте меньшие шаги, находите и используйте более простые, более конкретные и более конкретные учебные материалы и примеры, и больше практикуйтесь на каждом шаге. Повторяйте этот процесс, делая резервные копии, упрощая и практикуясь, пока не обнаружите, что делаете успехи. В двух словах, это секрет овладения математикой для большинства людей.
Математика не похожа на английский
Многие математически ориентированные люди имеют слабые словесные навыки.Устные результаты теста SAT для студентов инженерных и научных школ, таких как Массачусетский технологический институт, Калифорнийский технологический институт и Карнеги-Меллон, обычно намного ниже, чем их впечатляющие количественные / математические оценки. И наоборот, многие люди с сильными словесными навыками плохо разбираются в математике. Я несколько необычен тем, что набрал 99-й процентиль по вербальным разделам экзаменов SAT для студентов и выпускников GRE. Я могу сравнивать изучение математики и изучение английского (и других гуманитарных наук) лучше, чем большинство других.
Математика отличается от английского и многих других гуманитарных наук. В математике каждый шаг критически зависит от каждого предыдущего шага. Обучение сложению зависит от знания чисел и умения считать. Умножение бессмысленно без мастерства сложения: три раза четыре означает «сложить три четверки вместе (4 + 4 + 4)» или «сложить четыре тройки вместе (3 + 3 + 3 + 3)». Деление определяется в терминах умножения: двенадцать, разделенное на три, - это число, которое при умножении на на три дает двенадцать (ответ - четыре).Эта критическая зависимость каждого шага от предыдущего шага или шагов обнаруживается в большинстве математических дисциплин, от базовой арифметики до алгебры и исчисления, от доказательства теорем в продвинутой чистой математике до выполнения сложных вычислений вручную или с помощью компьютера.
В английском и многих других гуманитарных науках пропуск шага - незнание определения нового слова, пропуск нескольких предложений или даже страниц в спешке и т. Д. - часто не является препятствием. Можешь продолжать. Значение неизвестного слова или пропущенных отрывков часто становится понятным из контекста.Важно получить общую картину - суть отрывка, статьи или книги, - но конкретные детали часто могут быть упущены или плохо поняты без фатальных последствий. Вы все еще можете получить пятерку в школе или хорошо работать. Конечно, лучше читать и понимать каждое слово и каждую деталь, но обычно это несущественно.
В математике, когда вы сталкиваетесь с неизвестным термином или символом, очень важно понять его значение и практическое использование, прежде чем продолжить. В противном случае в подавляющем большинстве случаев вы заблудитесь и будете теряться все больше и больше по мере продвижения.Если какой-то один шаг в вычислении, выводе формулы или доказательстве теоремы не имеет смысла, вам нужно остановиться, сделать резервную копию, если необходимо, и освоить его, прежде чем продолжить. В противном случае вы обычно заблудитесь. Это фундаментальное качественное отличие математики от английского (и многих других гуманитарных наук).
Не сравнивайте себя с Prodigies
Популярный образ математиков и математиков состоит в том, что математика сродни магии, а математики - антисоциальные чудаки, рожденные с магической силой, которая позволяет им решать дифференциальные уравнения в колыбели - никакой практики или тяжелой работы не требуется.В фильме Good Will Hunting (1997) Мэтт Дэймон - математический гений-самоучка из сурового бедного ирландского района Бостона и уборщик Массачусетского технологического института, решающий математические задачи мирового уровня, оставленные на классных классных досках во время уборки. В популярной комедии « Теория большого взрыва » Джим Парсонс играет Шелдона Купера, сумасшедшего физика-теоретика с предполагаемыми симптомами синдрома Аспергера, который, по всей видимости, в подростковом возрасте опубликовал революционное исследование.В фильме 1985 года Настоящий гений , действие которого происходит в вымышленном университете, очень слабо основанном на Калтехе, Габриэль Джаррет играет Митча Тейлора, пятнадцатилетнего вундеркинда-самоучки, у которого ужасные отношения со своими неподдерживающими родителями, который, как показано, проводит прорывное исследование для ЦРУ, будучи (15-летним) первокурсником в Pacific Tech. Еще много примеров можно привести в кино, на телевидении и в массовой культуре.
Два очка. Во-первых, эти популярные, в основном вымышленные изображения вундеркиндов математики и науки сильно преувеличены по сравнению с настоящими вундеркиндами, настолько впечатляющими и устрашающими, какими иногда могут быть настоящие вундеркинды.Вымышленные вундеркинды, такие как «Уилл Хантинг» Мэтта Дэймона, часто изображаются как возникающие в результате волшебства или божественного вмешательства в весьма неожиданных семьях и обстоятельствах. Напротив, наиболее распространенным фоном для вундеркиндов математики или естественных наук является академическая семья - папа, мама или оба родителя - профессора - или аналогичная семейная среда, богатая математикой и естествознанием. Многие вундеркинды, которых я встречал в Калифорнийском технологическом институте или других учреждениях, имеют академическое или другое богатое семейное образование. Ни одного дворника из MIT 🙂.
Вундеркинды также часто изображаются совершившими крупные научные или технологические прорывы подростками . Это очень редко в реальном мире. Это правда, что люди в возрасте от двадцати лет совершили немало крупных научных и технологических прорывов, но подростки встречаются довольно редко. Даже Фило Фарнсворт, которому часто приписывают изобретение электронного телевидения в четырнадцать лет, не имел рабочего прототипа электронного телевизора до двадцати лет.
Большинство настоящих математических вундеркиндов, как и большинство или все шахматные вундеркинды, по-видимому, достигают своих выдающихся результатов благодаря обширному обучению и практике, даже если у них есть врожденные способности к математике. Любопытно, что многие настоящие вундеркинды не достигают тех достижений, на которые можно было бы рассчитывать в дальнейшей жизни.
Во-вторых, настоящие чудеса очень редки. Несмотря на изображение в Real Genius , большинство студентов Калифорнийского технологического института в 1980-х годах не были вундеркиндами из реального мира, не говоря уже о таких преувеличенных вымышленных вундеркиндах, как Митч Тейлор и Крис Найт (которых играет Вэл Килмер).Исторически сложилось так, что особенно до трансформации математики и естественных наук во время и сразу после Второй мировой войны, что затруднило дальнейшую карьеру в математике или естественных науках без очень высоких количественных оценок на стандартных тестах и экзаменах, многих достижений в математике и высших математических науках. были сделаны не-вундеркиндами. Некоторые из его учителей называли математика Германа Грассмана «медлительным». Минковский назвал Эйнштейна «этой ленивой собакой». Грассманн и Эйнштейн являются примерами «поздно расцветающих» в математике и физике.
Изучая математику, не сравнивайте себя с вундеркиндами, особенно вундеркиндами. Большинство людей, разбирающихся в математике, не были вундеркиндами.
Как изучать математику
Опять же, чтобы выучить математику, если вы заблудились, что является обычным и естественным, вернитесь к тому, что вы знаете, убедитесь, что вы действительно знаете это, попрактикуйтесь в том, что знаете, а затем снова двигайтесь вперед. Возможно, вам придется повторить это много раз.
Иногда шаг может быть трудным.Если возможно, постарайтесь разбить сложный шаг на более простые. Изучите каждый более простой шаг последовательно, по одному. Учебники математики и другие учебные материалы иногда пропускают ключевые шаги, представляя два или более шага как один шаг, предполагая, что это очевидно для ученика (часто это не так) или будет объяснено далее в классе (часто это не так). Следовательно, помните, что один запутанный шаг может скрыть несколько шагов. Если какой-то шаг сбивает с толку, попробуйте найти учителя, другого ученика или учебные материалы, которые могут объяснить этот шаг более ясно и более подробно.
Математика является абстрактным предметом и страдает излишней абстракцией в учебных материалах и преподавании. Печально известный пример этого - обучающий эксперимент «Новая математика» 1960-х годов.
Некоторые из вас, у кого есть маленькие дети, возможно, оказались в затруднительном положении из-за невозможности выполнять домашнее задание по арифметике своего ребенка из-за нынешней революции в преподавании математики, известной как новая математика. Итак, в качестве общественной службы здесь сегодня вечером я подумал, что проведу краткий урок Новой математики.Сегодня мы поговорим о вычитании. Это первая комната, в которой я работал какое-то время, в которой не было классной доски, поэтому нам придется прибегнуть к более примитивным наглядным пособиям, как говорится в «ed biz». Рассмотрим следующую задачу на вычитание, которую я поставлю здесь: 342 - 173.
А теперь вспомните, как мы это делали. три из двух - девять; носите с собой одну, и если вам меньше 35 лет или вы ходили в частную школу, вы говорите, что семь из трех - шесть, но если вам больше 35 лет и вы ходили в государственную школу, вы говорите, что восемь из четырех - шесть; возьмите один, чтобы у нас было 169, но в новом подходе, как вы знаете, важно понять, что вы делаете, а не получить правильный ответ.Вот как они это делают сейчас ...
Том Лерер, Введение в новую математику (Песня)
Правило (для большинства людей) в математике: если шаг оказывается слишком абстрактным, ищите более конкретные, конкретные учебные материалы и примеры. Если «шары в урнах» (пресловутый штамп вероятности и статистики) слишком абстрактны для вас, поищите объяснения и примеры с «печеньем в банках» или что-то еще более конкретное и актуальное для вас. Что-то, что вы можете легко визуализировать или даже взять с кухни и использовать для решения проблемы.
Чем проще, конкретнее и конкретнее вы можете сделать каждый шаг в изучении математики, тем легче будет для большинства людей. Практикуйтесь, практикуйтесь, практикуйтесь, пока не овладеете шагом. Чтобы что-то запомнить, обычно требуется как минимум три отработанных примера или других повторений. Часто для полного овладения мастерством требуется много повторений с последующим периодическим использованием. Тогда и только тогда переходите к следующему шагу в последовательности.
Начните с простого, конкретного и особенного.Со временем появятся абстрактные и более сложные. Не начинайте с абстрактного или сложного. Если что-то слишком абстрактное или сложное для вас, сделайте это конкретным и, если возможно, упростите. Поищите в библиотеке, магазине подержанных книг, в Интернете везде, где только возможно, более простые и конкретные учебные материалы и примеры, которые работают для вас. Практика, практика, практика. Сегодня многие учебные пособия, видео лекций и другие материалы (самого разного качества) доступны бесплатно в Интернете.
Опасности питья из пожарного шланга
Критическая зависимость каждого шага от усвоения предыдущего шага в изучении математики имеет серьезные последствия для образования.Когда я много месяцев назад подал заявление в Калифорнийский технологический институт, в рекламных материалах университета была фраза, в которой обучение в Калтехе сравнивалось с «питьем из пожарного шланга». Такая риторика нравится молодым людям, особенно молодым мужчинам. Конечно, никто в здравом уме не станет пить из пожарного шланга. В то время мне этого не приходило в голову.
В 1980-х годах, а может быть, и по сей день, в Калифорнийском технологическом институте был ошеломляющий показатель отсева - около трети его самых умных студентов.
Вскоре стало очевидно, что большая часть учений известных исследователей была довольно посредственной. Это не очень хорошо сравнивалось с преподаванием математики и естествознания, которое я испытал ранее. В то время мне не хватало адекватного понимания того, как успешно преподаются математические и естественные темы, и я научился объяснять, что профессора делали неправильно. Следует отметить, что успех в качестве исследователя или ученого, по-видимому, не связан со способностью и навыками фактически преподавать в своей области 🙂.
В чем была проблема? В общем, профессора торопливо просматривали материал, особенно многие фундаментальные темы и концепции, которые они считали основными и очевидными, а иногда даже полностью их пропускали. Они часто задавали чрезвычайно сложные, сложные, иногда «трюковые» задачи, такие как вводных примеров, домашних заданий и экзаменационных задач. Задачи могли быть интеллектуально увлекательными для исследователя с многолетним опытом, но совершенно неуместными для студентов, изучающих математику или физику.
Я все еще хорошо помню, как преподаватель второго курса математики бормотал о «линейных функциях» и «линейных операторах», пока один разочарованный студент наконец не заговорил и не спросил: «Что такое линейное?» Профессор действительно дал довольно хороший ответ на вопрос, что означает линейность в математике, но дело в том, что эта идея была так принята как должное известными математическими факультетами, что они даже не потрудились преподать ее во вводной части. классы. 🙂
Оглядываясь назад, можно сказать, что большинство студентов Калифорнийского технологического института были из школ с отличными математическими и естественными , преподававшими , которые следовали многим правилам, изложенным в этой статье.В классах было достаточно простых примеров и повторений, чтобы мотивированный студент усвоил и усвоил материал. Фактически, во многих случаях очень одаренные студенты, поступившие в Калифорнийский технологический институт, вероятно, чувствовали, что они могут учиться быстрее, отсюда и привлекательность «пить из шланга».
Урок для любого, кто изучает математику, состоит в том, чтобы убедиться, что любой курс или учебная программа, которые вы изучаете, проходят достаточно медленно, выделяя время, чтобы представить каждый шаг в простой и понятной форме, чтобы вы могли полностью усвоить материал - изучите и освоите каждый шаг перед переход к следующему шагу.Это не должно быть «питье из пожарного шланга». Скорее, вы должны почувствовать, что можете пойти немного быстрее. Не в десять раз быстрее, но должна быть подушка, больше времени и повторений, чем абсолютно необходимо, на случай, если у вас возникнут трудности с обучением конкретному шагу, вы заболеете, расстанетесь с девушкой / парнем или произойдет что-то еще. Реальная жизнь полна неожиданных неудач.
Заключение
Каждый шаг в изучении математики критически зависит от изучения и усвоения предыдущего шага или шагов.Самое важное правило для овладения математикой: если вы заблудились (а большинство людей, включая «экспертов», часто теряются), вернитесь к тому, что вы знаете, и начните заново. Не пытайся продолжать; в большинстве случаев вы только потеряете больше. При необходимости, когда вы делаете резервную копию и начинаете заново, делайте меньшие шаги, находите и используйте более простые, более конкретные и более конкретные учебные материалы и примеры, и больше практикуйтесь на каждом шаге. Повторяйте этот процесс, делая резервные копии, упрощая и практикуясь, пока не обнаружите, что делаете успехи.Не пытайтесь «пить из шланга». Потерпи. Не торопитесь, изучите и осваивайте каждый шаг последовательно. В двух словах, это секрет овладения математикой для большинства людей.
© 2014 Джон Ф. Макгоуэн
Об авторе
Джон Ф. Макгоуэн, доктор философии решает задачи с использованием математического и математического программного обеспечения, включая разработку технологий сжатия видео и распознавания речи. Он имеет обширный опыт разработки программного обеспечения на C, C ++, Visual Basic, Mathematica, MATLAB и многих других языках программирования.Он, вероятно, наиболее известен своим обзором AVI, часто задаваемыми вопросами в Интернете о формате файлов Microsoft AVI (Audio Video Interleave). Он работал подрядчиком в исследовательском центре NASA Ames Research Center, занимаясь исследованиями и разработкой алгоритмов и технологий обработки изображений и видео, а также приглашенным научным сотрудником в HP Labs, занимающимся разработкой приложений компьютерного зрения для мобильных устройств. Он опубликовал статьи о происхождении и эволюции жизни, исследовании Марса (в ожидании открытия метана на Марсе) и дешевом доступе в космос.Имеет докторскую степень. по физике из Университета Иллинойса в Урбана-Шампейн и степень бакалавра наук по физике Калифорнийского технологического института (Калифорнийский технологический институт).
Получите больше подобных вещей
Получайте интересные математические обновления прямо в свой почтовый ящик.
Спасибо за подписку. Пожалуйста, проверьте свою электронную почту, чтобы подтвердить подписку.
Что-то пошло не так.
.Изучение математики
Зачем изучать математику?
Технологии повсюду вокруг нас, и вам нужна математика, чтобы овладеть ими!
| На самом деле для большинства высокооплачиваемых должностей требуются хорошие математические навыки:
|
|
И математика - это не только числа, это еще и модели!
Значит, для таких профессий, как мода и дизайн интерьера, нужны математические навыки.
Математика пригодится и в повседневной жизни:
- Вложение денег (процентные ставки, прибыль и т. Д.)
- Сметная стоимость
- Шоппинг (неужели выгодно?)
- Понимание компьютеров
- Проектирование комнат и садов
- Планирование поездок
Математика также улучшает наши умственные способности, поскольку учит нас логическому мышлению.
И вообще, это просто забава: какой еще предмет о решении головоломок?
Как быть экспертом
Есть два основных этапа:
Получите информацию ... прочтите, послушайте учителя, посмотрите видео. Используйте информацию ... набросайте ее, подумайте, ответьте на вопросы. |
Использование - это так важно! Ответы на вопросы помогут вам систематизировать идеи в уме *.
Постарайтесь выполнять около 1 часа практики самостоятельно каждый день *
Как читать по математике
Математика говорит о многом в коротком пространстве .
Пример на английском языке: «Мы не знаем, сколько стоят степлеры или лотки, но знаем, что офис-менеджер купил 15 степлеров и 11 лотков на общую сумму 73 доллара».
А вот по математике: 15 с + 11 = 73
Так что хорошо перечитывать, ходить взад и вперед и играть с идеями.
Чтение по математике отличается от чтения английского |
Прочтите, подумайте об этом, прочтите еще раз, запишите или набросайте, а затем используйте (отвечая на вопросы), все это помогает проникнуть в ваши мысли.
Пример: преобразование Цельсия в Фаренгейт
° F = (° C × 9 / 5 ) + 32
- Прочтите его сначала, чтобы увидеть, что с одной стороны ° F (что означает по Фаренгейту), а с другой стороны - ° C, (Цельсия).
- Теперь просмотрите это снова и посмотрите, что ° C умножено на 9/5, и подумайте: «Интересно, почему это делается? Почему 9/5?»
- Тогда обратите внимание, что добавлено 32 ... почему это так?
- Может быть, вы могли бы сделать эскиз (как показано ниже)
- Затем используйте его самостоятельно, сделайте несколько преобразований и посмотрите, как это работает
Сделайте наброски
Это действительно помогает понять, когда вы зарисовываете то, что вы изучаете *. Делайте большие и жирные наброски с большим количеством этикеток и пометок. Как этот набросок о градусах Цельсия и Фаренгейта: |
Наброски также очень полезны при ответе на вопросы.
Работать аккуратно
Аккуратная работа помогает яснее мыслить , а также дает хорошие умственные привычки. |
Имейте гордость за свою работу, даже если никто другой ее не увидит.
Не торопитесь!
Математика - это не чтение страниц ... это построение концепций в уме.
Так что не думайте: «Я прочитал сегодня 2 страницы», вместо этого думайте: «Теперь я лучше понимаю графики».
Важно изучать одну идею за раз, убедиться, что вы ее понимаете, и выполнять множество упражнений, чтобы стать экспертом.
Важно: если вы пропустите раздел, остальное может не иметь смысла.
Вы запутаетесь, расстроитесь и начнете ненавидеть эту тему.
Лекарство?
- Вернуться туда, где это имело смысл,
- затем снова плавно двигаться вперед,
- делать много практических вещей например решать вопросы и делать наброски
И вы скоро "вернетесь"
Практика, Практика, Практика
У меня много вопросов.
Именно поэтому мы разработали базу данных вопросов по математике.
Если вам нужно сдать экзамен, найдите прошлые экзамены и выполните их *.
Читал лот
Возьмите несколько книг и прочтите их. Проведите время на математических сайтах (например, на этом!) И присоединитесь к форуму (например, на форуме Math is Fun).
Придумывайте свои собственные способы
У вас есть свой собственный стиль обучения .
Не просто следуйте инструкциям, которые вам показывают, попробуйте свои собственные идеи!
Играйте с идеями, которые вы изучаете.
И попробуйте прочитать на одну и ту же тему из разных мест, вы можете найти такие, которые имеют для вас гораздо больше смысла.
Ваш разум - удивительный и уникальный инструмент, и вы хотите использовать его наилучшим образом.
И изучение математики - хороший способ улучшить ее!
Все об идеях
Более важно знать идеи , чем запоминать формулы.
Если вы знаете, как работает , вы всегда можете воссоздать формулы, когда они вам понадобятся.И вы также можете делать более умные вещи с вашими идеями.
* Библиография:
- Рисование «неотъемлемая часть» обучения естественным наукам https://www.nottingham.ac.uk/news/pressreleases/2011/august/drawing-integral-to-science-learning.aspx
- Практика поиска дает больше обучения, чем детальное изучение с концептуальным картированием (Джеффри Д. Карпике и Дженелл Р. Блант) Наука 20 января 2011 г .: 1199327
- Тестирование улучшает память https: // www.ologicalscience.org/index.php/news/releases/testing-improves-memory.html
- Практическое тестирование защищает память от стресса
https://now.tufts.edu/news-releases/practice-testing-protects-memory-against-stress - Сколько домашнего задания по математике, естествознанию - слишком много?
https://www.apa.org/news/press/releases/2015/03/math-science-homework.aspx - Худшие и лучшие советы и привычки учебы на основе психологических исследований
https: // cognitiontoday.ru / 2019/04 / худшие-и-лучшие-советы-исследования-привычки-от-психологического-исследования-как-к / - Х. Зигмундссон, Р. К. Дж. Полман и Х. Лорос (2013) Изучение индивидуальных различий в математических навыках детей: корреляционный и пространственный подход . Психологические отчеты: том 113, выпуск, стр. 23-30. DOI: 10.2466 / 04.10.PR0.113x12z2 https://www.eurekalert.org/pub_releases/2013-12/nuos-nmg121313.php
Познание и обучение / изучение математики - Викиучебники, открытые книги для открытого мира
Из Wikibooks, открытые книги для открытого мира
Перейти к навигации Перейти к поиску Найдите Познание и обучение / изучение математики в одном из родственных проектов Викиучебника: Викиучебник не имеет страницы с таким точным названием. Другие причины, по которым это сообщение может отображаться:
|
Что значит быть успешным в математике? | Помощь детям в изучении математики
с коэффициентом n 3 , они могут понять многие ситуации, в которых объекты любой формы пропорционально увеличиваются или уменьшаются. (Они могут понять, например, почему чашка на 16 унций, имеющая ту же форму, что и чашка на 8 унций, намного меньше, чем в два раза по высоте.)
Знания, полученные с пониманием, обеспечивают основу для запоминания или воссоздания математических фактов и методов, для решения новых и незнакомых проблем и для генерирования новых знаний.Например, студенты, которые хорошо разбираются в операциях с целыми числами, могут распространить эти концепции и процедуры на операции с десятичными знаками.
«Понимание» также помогает учащимся избежать серьезных ошибок при решении проблем, особенно серьезных. Любой учащийся с хорошим пониманием чисел, который умножает 9,83 и 7,65 и получает за ответ 7 519,95, должен немедленно увидеть, что что-то не так. Ответ не может быть больше 10 умножить на 8 или 80, так как одно число меньше 10, а другое меньше 8.Это рассуждение должно наводить на мысль студенту о том, что десятичная точка была неправильно поставлена.
(2) Вычисления: выполнение математических процедур, таких как сложение, вычитание, умножение и деление чисел гибко, точно, эффективно и надлежащим образом.
Вычислительная техника включает в себя свободное владение процедурами сложения, вычитания, умножения и деления мысленно или с помощью бумаги и карандаша, а также знание того, когда и как правильно использовать эти процедуры. Хотя слово вычисление подразумевает арифметическую процедуру, в этом документе оно также относится к свободному владению процедурами из других разделов математики, таких как измерение (измерение длины), алгебра (решение уравнений), геометрия (построение подобных фигур) и статистика (графические данные). Свободное владение означает умение выполнять процедуру эффективно, точно и гибко.
Ученикам необходимо быстро и точно вычислить основные числовые комбинации (6 + 7, 17–9, 8 × 4 и т. Д.). Им также необходимо стать точными и эффективными с помощью алгоритмов - пошаговых процедур для сложения, вычитания, умножения и деления многозначных целых чисел, дробей и десятичных знаков, а также для выполнения других вычислений. Например, у всех учащихся должен быть понятный им алгоритм умножения 64 и 37, который является достаточно эффективным и достаточно общим, чтобы использовать его с другими двузначными числами, и который может быть расширен для использования с более крупными числами.
Использование калькуляторов не должно угрожать развитию вычислительных навыков учащихся. Напротив, калькуляторы могут улучшить как понимание
.