Как научиться решать вторую часть по математике огэ


2 часть ОГЭ по математике

Справочник подготовки к ОГЭ и ЕГЭ по математике

E-mail*

Нажимая на кнопку, я даю согласие на обработку персональных данных

Во вторую часть ОГЭ по математике* входят 6 заданий на проверку углубленных знаний по алгебре (с 21 по 23 задание) и геометрии (с 24 по 26 задания). Решить их реально, главное прорешать все виды заданий!

Обратите внимание на экзамене на оформление задач и конкретный ответ на поставленный вопрос в условии задачи.

За каждое верное решение задания из второй части ОГЭ, вы сможете получить 2 ценных балла. Не упускайте возможности набрать высокие баллы!

Задания 21 (C1). Алгебраические выражения, уравнения, неравенства и их системы:

21.1. Алгебраические выражения >>>;

21.2. Неравенства >>>;

21.3. Система неравенств >>>;

21.4. Уравнения >>>;

21.5. Система уравнений >>>  и здесь >>>.

Задания 22 (C2). Текстовые задачи:

22.1. Задачи на движение по воде >>>;

22.2. Задачи на проценты, растворы, смеси и сплавы >>>;

22.3. Задачи на совместную работу >>>;

22.4. Задачи на движение по прямой >>>;

22.5. Разные задачи >>>.

Задания 23 (C3). Функции и их свойства. Графики функций:

23.1. Параболы >>>;

23.2. Гиперболы >>>;

23.3. Кусочные непрерывные функции >>>;

23.4. Разные задачи >>>.

Задания 24 (C4). Геометрическая задача на вычисление:

24.1. Углы >>>;

24.2. Треугольники >>>;

24.3. Четырехугольники >>>;

24.4. Окружности >>>.

Задания 25 (C5). Геометрическая задача на доказательство:

25.1. Треугольники и их элементы >>>;

25.2. Четырехугольники и их элементы >>>;

25.3. Окружности и их элементы >>>.

Задания 26 (C6). Геометрическая задача повышенной сложности:

26.1. Треугольники >>>;

26.2. Четырехугольники >>>;

26.3. Окружности >>>;

26.4. Комбинация окружностей и многоугольников >>>.

Первая часть ОГЭ по математике >>>

Справочник подготовки к ОГЭ и ЕГЭ по математике

E-mail*

Нажимая на кнопку, я даю согласие на обработку персональных данных

*Порядок заданий представлен по состоянию на 2016-2017 учебный год

Центр развития избранных «МатРИЦА»

Как изучать математику: 7 советов по решению проблем

Как изучать математику

Математика - это предмет, от которого нельзя отказаться. Некоторым это нравится, но, честно говоря, большинство людей ненавидят изучение математики. Важность математики для студентов как никогда. Предметы STEM - основа технологий завтрашнего дня. Большинство университетских курсов включают определенный уровень математики, в то время как почти каждая профессия использует математику в той или иной форме ежедневно. Проблема многих студентов заключается в том, что они не знают , как изучать математику для получения хороших результатов.

Математика - один из тех предметов, на изучение которых можно легко потратить часы, но в конечном итоге вы не окажетесь мудрее. Сколько бы вы ни изучили, если вы не можете решить задачу в день теста, вы потеряны. К счастью, есть техник изучения математики , которые вы можете выполнять независимо от вашего уровня. К концу записи в блоге вы можете даже полюбить математику!

7 советов по решению математических задач

1.Практика, практика и еще раз Практика

Невозможно правильно изучать математику, просто читая и слушая. Чтобы изучать математику, нужно засучить рукава и действительно решить некоторые задачи. Чем больше вы тренируетесь решать математические задачи, тем лучше . Каждая проблема имеет свои особенности, и перед экзаменом важно решить ее множеством способов. От этой реальности никуда не деться, чтобы хорошо сдать экзамен по математике, вам нужно заранее решить МНОГО математических задач.

2. Просмотрите ошибки

Когда вы практикуетесь с этими проблемами, важно, чтобы проработал процесс для каждого решения . Если вы допустили какие-либо ошибки, вам следует просмотреть их и понять, где ваши навыки решения проблем подвели вас. Понимание того, как вы подошли к проблеме и где вы ошиблись, - отличный способ стать сильнее и избежать тех же ошибок в будущем.

Присоединяйтесь к тысячам студентов в нашей математической группе и ощутите всю мощь совместного обучения.Это бесплатно!

3. Освойте ключевые концепции

Не пытайтесь запоминать процессы. Это контрпродуктивно. В долгосрочной перспективе гораздо лучше и полезно сосредоточиться на понимании процесса и логики, которые задействованы. Это поможет вам понять, как вам следует подходить к таким проблемам в будущем.

Помните, что математика - это последовательный предмет , поэтому важно иметь твердое понимание ключевых понятий, лежащих в основе математической темы, прежде чем переходить к другим, более сложным решениям, основанным на понимании основ.

4. Разберитесь в своих сомнениях

Иногда вы можете застрять, пытаясь решить часть математической задачи, и вам будет трудно перейти к следующему этапу. Многие студенты часто пропускают этот вопрос и переходят к следующему. Вам следует избегать этого и вместо этого тратить время на попытки понять процесс решения проблемы. Как только вы поймете, в чем состоит первоначальная проблема, вы можете использовать ее как ступеньку для перехода к оставшейся части вопроса.

Помните: освоение математики требует времени и терпения.

Хорошая идея - учиться с другом, с которым вы можете посоветоваться и поделиться идеями при решении сложных проблем.

5. Создание учебной среды, свободной от отвлекающих факторов

Математика - это предмет, требующий большей концентрации , чем любой другой. Правильная учебная среда и свободных от отвлекающих факторов зона может быть определяющим фактором при решении сложных уравнений или задач по геометрии, алгебре или тригонометрии!

Обучение под музыку может помочь создать расслабляющую атмосферу и стимулировать поток информации.Наличие подходящей фоновой музыки может способствовать достижению максимальной концентрации. Конечно, стоит держаться подальше от Pitbull и Eminem , инструментальная музыка - лучшее в наши дни.

В нашем сообщении в блоге «Музыка для учебы: 10 советов по выбору лучшей музыки для учебы» дается больше советов по выбору лучшей музыки для учебы.

6. Создайте математический словарь

Математика имеет специфическую терминологию с большим количеством словаря .Мы предлагаем вам создать заметки или карточки со всеми понятиями, терминологией и определениями, которые вам нужно знать. Вы должны указать их значение, некоторые ключевые моменты и даже несколько примеров ответов, чтобы вы могли в любое время проконсультироваться с ними и подвести итоги.

7. Применение математики к реальным задачам

При приближении к математике старайтесь, насколько это возможно, применять реальные задачи. Математика может быть очень абстрактной, поэтому поиск практического применения может помочь изменить вашу точку зрения и по-другому усвоить идеи.

Вероятность, например, может использоваться в повседневной жизни, чтобы предсказать исход происходящего и определить, хотите ли вы пойти на риск, например, купить лотерейный билет или сыграть в азартную игру.

О, и не забывайте, что также важно, чтобы быть уверенным в себе. и сдать экзамен, зная, что вы подготовились правильно!

О блоге GoConqr

Наш блог является частью GoConqr, бесплатной обучающей платформы для создания, обмена и поиска учебных ресурсов, которые помогают учащимся и учителям достигать своих учебных целей.Нажмите здесь, чтобы начать создавать интеллектуальные карты, карточки, заметки, викторины, блок-схемы слайдов и курсы прямо сейчас!

.

Как решать задачи со словом по математике

Приемы и методы, которые мы применяем для решения словесных задач по математике, будут варьироваться от задачи к задаче.

Приемы и методы, которые мы применяем для решения словесной задачи в определенной теме математики, не будут работать для другой задачи со словами, найденной в какой-либо другой теме.

Например, методы, которые мы применяем для решения задач со словами в алгебре, не будут работать для задач со словами в тригонометрии.

Потому что в алгебре мы решаем большинство задач без диаграмм.Но в тригонометрии для каждой задачи со словами мы должны нарисовать диаграмму. Без диаграммы всегда немного сложно решать текстовые задачи в тригонометрии.

Несмотря на то, что у нас есть разные техники для решения словесных задач по разным предметам математики, давайте рассмотрим наиболее часто используемые шаги.

Этапы решения задач со словами в математике

Шаг 1:

Понимание вопроса важнее любого другого.То есть всегда очень важно понимать информацию, изложенную в вопросе, а не решать.

Шаг 2:

Если это возможно, мы должны разделить данную информацию. Потому что, когда мы разбиваем данную информацию на части, мы можем легко их понять.

Шаг 3:

Как только мы четко поймем данную информацию, решение словесной проблемы не будет сложной работой.

Шаг 4:

Когда мы пытаемся решить проблемы со словами, мы должны ввести «x» или «y» или какой-либо другой алфавит для неизвестного значения (= ответ на наш вопрос).Наконец, мы должны получить значение для алфавита, которое было введено для неизвестного значения.

Шаг 5:

Если требуется, мы должны нарисовать картинку для данной информации. Рисование картинки для данной информации даст нам четкое представление о вопросе.

Шаг 6:

Используя алфавит, введенный для неизвестного значения, мы должны перевести английское утверждение (информацию), данное в вопросе, как математическое уравнение.

При переводе мы должны переводить следующие английские слова как соответствующие математические символы.

из -------> x (умножение)

am, is, are, was, was, will be, would be --------> = (равно)

Step 7:

После того, как мы правильно переведем английское утверждение (информацию), данное в вопросе, в виде математического уравнения, 90% работы будет завершено. Остальные 10% только получают ответ.Это решение для неизвестного.

Это шаги, которые чаще всего используются при решении словесных задач в математике.

Давайте посмотрим, как эти шаги участвуют в решении задачи со словами в математике в следующем примере.

Как решать задачи со словом по математике - пример

Вопрос:

Возраст мужчины в три раза превышает сумму возрастов двух его сыновей, и 5 лет, следовательно, его возраст будет в два раза больше, чем их возраст.Найдите настоящий возраст мужчины.

Ответ:

Шаг 1:

Давайте разберемся с данной информацией. В вопросе приведены две информации.

1. Возраст человека в три раза превышает возраст двух его сыновей. (В настоящее время)

2. Через 5 лет его возраст будет вдвое больше, чем их возраст. (Через 5 лет)

Шаг 2:

Цель вопроса:

Настоящий возраст мужчины =?

Шаг 3:

Введите необходимые переменные для информации, указанной в вопросе.

Пусть x будет настоящим возрастом мужчины.

Пусть y будет суммой нынешних возрастов двух сыновей.

Понятно, что значение x предстоит найти.

Потому что это цель вопроса.

Шаг 4:

Преобразуйте данную информацию в математическое уравнение, используя x и y.

Первая информация:

Возраст человека в три раза превышает сумму возрастов двух его сыновей.

Перевод:

Возраст человека -----> x

равен -----> =

Трехкратная сумма возрастов двух его сыновей -----> 3y

Уравнение, связанное с первой информацией с использованием x и y:

x = 3y ----- (1)

Вторая информация:

Через 5 лет его возраст будет вдвое больше, чем их возраст.

Перевод:

Возраст мужчины через 5 лет -----> (x + 5)

Сумма возрастов двух его сыновей через 5 лет равна

y + 5 + 5 = y + 10

(Так как есть два сына, 5 добавляется дважды)

Удвоение суммы возрастов двух сыновей -----> 2 (y + 10)

будет -----> =

Уравнения, относящиеся ко второй информации с использованием x и y:

x + 5 = 2 (y + 10) ----- (2)

Шаг 5:

Решите уравнения (1) и (2) .

Из (1) замените 3y на x в (2).

3y + 5 = 2 (y + 10)

3y + 5 = 2y + 20

y = 15

Заменим 15 вместо y в (1).

x = 3 (15)

x = 45

Итак, нынешний возраст мужчины составляет 45 лет.

Кроме того, что описано в этом разделе, если вам нужны другие математические данные, воспользуйтесь нашим пользовательским поиском Google здесь.

Вы также можете посетить следующие веб-страницы, посвященные различным вопросам математики.

ЗАДАЧИ СО СЛОВАМИ

Задачи со словами HCF и LCM

Задачи со словами на простых уравнениях

Задачи со словами на линейных уравнениях

Задачи со словами на квадратных уравнениях

Алгебраные задачи со словами

Проблемы со словами в поездах

Проблемы со словами по площади и периметру

Проблемы со словами по прямой и обратной вариации

Проблемы со словами по цене за единицу

Проблемы со словами по цене за единицу

Word задачи по сравнению ставок

Преобразование общепринятых единиц в текстовые задачи

Преобразование в метрические единицы в словесных задачах

Word задачи по простому проценту

Word по сложным процентам

Word по типам ngles

Проблемы со словами с дополнительными и дополнительными углами

Проблемы со словами с двойными фактами

Проблемы со словами тригонометрии

Проблемы со словами в процентах

Проблемы со словами о прибылях и убытках

Разметка и разметка задачи

Задачи с десятичными словами

Задачи со словами о дробях

Задачи со словами о смешанных фракциях

Одношаговые задачи с уравнениями со словами

Проблемы со словами о линейных неравенствах

Слово пропорции и пропорции Задачи со словами

Проблемы со временем и рабочими словами

Задачи со словами на множествах и диаграммах Венна

Проблемы со словами на возрастах

Проблемы со словами по теореме Пифагора

Процент числового слова pr проблемы

Проблемы со словами при постоянной скорости

Проблемы со словами при средней скорости

Проблемы со словами при сумме углов треугольника 180 градусов

ДРУГИЕ ТЕМЫ

Сокращения прибылей и убытков

Сокращения в процентах

Сокращения в таблице умножения

Сокращения времени, скорости и расстояния

Сокращения соотношения и пропорции

Домен и диапазон рациональных функций

Область и диапазон рациональных функций функции с отверстиями

График рациональных функций

График рациональных функций с отверстиями

Преобразование повторяющихся десятичных знаков в дроби

Десятичное представление рациональных чисел

Находить квадратный корень с помощью long di зрение

L.Метод CM для решения задач времени и работы

Преобразование задач со словами в алгебраические выражения

Остаток при делении 2 в степени 256 на 17

Остаток при делении 17 в степени 23 на 16

Сумма всех трехзначных чисел, делимых на 6

Сумма всех трехзначных чисел, делимых на 7

Сумма всех трехзначных чисел, делимых на 8

Сумма всех трехзначных чисел, образованных с использованием 1, 3 , 4

Сумма всех трех четырехзначных чисел, образованных ненулевыми цифрами

Сумма всех трех четырехзначных чисел, образованных с использованием 0, 1, 2, 3

Сумма всех трех четырехзначных чисел числа, образованные с использованием 1, 2, 5, 6

.

Что значит быть успешным в математике? | Помощь детям в изучении математики

с коэффициентом n 3 , они могут понять многие ситуации, в которых объекты любой формы пропорционально увеличиваются или уменьшаются. (Они могут понять, например, почему чашка на 16 унций, имеющая ту же форму, что и чашка на 8 унций, намного меньше, чем в два раза по высоте.)

Знания, полученные с пониманием, обеспечивают основу для запоминания или воссоздания математических фактов и методов, для решения новых и незнакомых проблем и для генерирования новых знаний.Например, студенты, которые хорошо разбираются в операциях с целыми числами, могут распространить эти концепции и процедуры на операции с десятичными знаками.

«Понимание» также помогает учащимся избежать серьезных ошибок при решении проблем, особенно серьезных. Любой учащийся с хорошим пониманием чисел, который умножает 9,83 и 7,65 и получает за ответ 7 519,95, должен сразу увидеть, что что-то не так. Ответ не может быть больше 10 умножить на 8 или 80, так как одно число меньше 10, а другое меньше 8.Это рассуждение должно наводить на мысль студенту о том, что десятичная точка была неправильно поставлена.

(2) Вычисления: выполнение математических процедур, таких как сложение, вычитание, умножение и деление чисел гибко, точно, эффективно и надлежащим образом.

Вычислительная техника включает в себя свободное владение процедурами сложения, вычитания, умножения и деления мысленно или с помощью бумаги и карандаша, а также знание того, когда и как правильно использовать эти процедуры. Хотя слово вычисление подразумевает арифметическую процедуру, в этом документе оно также относится к свободному владению процедурами из других разделов математики, таких как измерение (измерение длины), алгебра (решение уравнений), геометрия (построение подобных фигур) и статистика (графические данные). Свободное владение означает умение выполнять процедуру эффективно, точно и гибко.

Ученикам необходимо быстро и точно вычислить основные числовые комбинации (6 + 7, 17–9, 8 × 4 и т. Д.). Им также необходимо стать точными и эффективными с помощью алгоритмов - пошаговых процедур для сложения, вычитания, умножения и деления многозначных целых чисел, дробей и десятичных знаков, а также для выполнения других вычислений. Например, у всех учащихся должен быть понятный им алгоритм умножения 64 и 37, который является достаточно эффективным и достаточно общим, чтобы использовать его с другими двузначными числами, и который может быть расширен для использования с более крупными числами.

Использование калькуляторов не должно угрожать развитию вычислительных навыков учащихся. Напротив, калькуляторы могут улучшить как понимание

.

Как учить математику | Блог по математике ∞

Мистер Джабез ​​Уилсон сильно засмеялся. "Ну я никогда!" сказал он. «Сначала я подумал, что ты сделал что-то умное, но вижу, что в этом все-таки ничего не было».

«Я начинаю думать, Ватсон, - сказал Холмс, - что я ошибаюсь в объяснении. «Omne ignotom pro magnifico», знаете ли, и моя бедная маленькая репутация, такая как она есть, потерпит кораблекрушение, если я буду так откровенен ... »

Лига красных голов, Артур Конан Дойл

Меня недавно спросил менеджер, специализирующийся на английском языке, который испытывал трудности с количественной частью GMAT (Graduate Management Admissions Test), как изучать математику.Многие люди борются с математикой в ​​нашем все более математическом мире, начиная от балансирования своей чековой книжки и управления бюджетом на работе до понимания заумных математических моделей, которые все чаще используются в дебатах о государственной политике, таких как глобальное потепление. Эта статья представляет собой расширенную версию моего ответа.

Самое важное правило для овладения математикой: если вы заблудились (а большинство людей, включая «экспертов», часто теряются), вернитесь к тому, что вы знаете, и начните заново.Не пытайся продолжать; в большинстве случаев вы только потеряете больше. При необходимости, когда вы делаете резервную копию и начинаете все сначала, делайте меньшие шаги, находите и используйте более простые, более конкретные и более конкретные учебные материалы и примеры и больше практикуйтесь на каждом шаге. Повторяйте этот процесс, делая резервные копии, упрощая и практикуясь, пока не обнаружите, что делаете успехи. В двух словах, это секрет овладения математикой для большинства людей.


Математика не похожа на английский

Многие математически ориентированные люди имеют слабые словесные навыки.Устные результаты теста SAT для студентов инженерных и научных школ, таких как Массачусетский технологический институт, Калифорнийский технологический институт и Карнеги-Меллон, обычно намного ниже, чем их впечатляющие количественные / математические оценки. И наоборот, многие люди с сильными словесными навыками плохо разбираются в математике. Я несколько необычен тем, что набрал 99-й процентиль по вербальным разделам экзаменов SAT для студентов и выпускников GRE. Я могу сравнивать изучение математики и изучение английского (и других гуманитарных наук) лучше, чем большинство других.

Математика отличается от английского и многих других гуманитарных наук. В математике каждый шаг критически зависит от каждого предыдущего шага. Обучение сложению зависит от знания чисел и умения считать. Умножение бессмысленно без мастерства сложения: трижды четыре означает «сложить три четверки вместе (4 + 4 + 4)» или «сложить четыре тройки вместе (3 + 3 + 3 + 3)». Деление определяется в терминах умножения: двенадцать, разделенное на три, - это число, которое при умножении на на три дает двенадцать (ответ - четыре).Эта критическая зависимость каждого шага от предыдущего шага или шагов обнаруживается в большинстве математических дисциплин, от базовой арифметики до алгебры и исчисления, от доказательства теорем в продвинутой чистой математике до выполнения сложных вычислений вручную или с помощью компьютера.

В английском и многих других гуманитарных науках пропуск шага - незнание определения нового слова, пропуск нескольких предложений или даже страниц в спешке и т. Д. - часто не является препятствием. Можешь продолжать. Значение неизвестного слова или пропущенных отрывков часто становится понятным из контекста.Важно получить общую картину - суть отрывка, статьи или книги, - но конкретные детали часто могут быть упущены или плохо поняты без фатальных последствий. Вы все еще можете получить пятерку в школе или хорошо работать. Конечно, лучше читать и понимать каждое слово и каждую деталь, но обычно это несущественно.

В математике, когда вы сталкиваетесь с неизвестным термином или символом, очень важно понять его значение и практическое использование, прежде чем продолжить. В противном случае в подавляющем большинстве случаев вы заблудитесь и будете теряться все больше и больше по мере продвижения.Если какой-то один шаг в вычислении, выводе формулы или доказательстве теоремы не имеет смысла, вам нужно остановиться, сделать резервную копию, если необходимо, и освоить его, прежде чем продолжить. В противном случае вы обычно заблудитесь. Это фундаментальное качественное различие между математикой и английским (и многими другими гуманитарными науками).


Не сравнивайте себя с Prodigies

Популярный образ математиков и математиков состоит в том, что математика сродни магии, а математики - антисоциальные чудаки, рожденные с магической силой, которая позволяет им решать дифференциальные уравнения в колыбели - никакой практики или тяжелой работы не требуется.В фильме Good Will Hunting (1997) Мэтт Дэймон - математический гений-самоучка из сурового бедного ирландского района Бостона и уборщик Массачусетского технологического института, решающий математические задачи мирового уровня, оставленные на классных классных досках во время уборки. В популярной комедии « Теория большого взрыва » Джим Парсонс играет Шелдона Купера, сумасшедшего физика-теоретика с предполагаемыми симптомами синдрома Аспергера, который, по всей видимости, в подростковом возрасте опубликовал революционное исследование.В фильме 1985 года Настоящий гений , действие которого происходит в вымышленном университете, очень слабо основанном на Калтехе, Габриэль Джаррет играет Митча Тейлора, пятнадцатилетнего вундеркинда-самоучки, у которого ужасные отношения со своими неподдерживающими родителями, который, как показано, проводит прорывное исследование для ЦРУ, будучи (15-летним) первокурсником в Pacific Tech. Еще много примеров можно привести в кино, на телевидении и в массовой культуре.

Два очка. Во-первых, эти популярные, в основном вымышленные изображения вундеркиндов математики и науки сильно преувеличены по сравнению с настоящими вундеркиндами, настолько впечатляющими и устрашающими, насколько иногда могут быть настоящие вундеркинды.Вымышленные вундеркинды, такие как «Уилл Хантинг» Мэтта Дэймона, часто изображаются как возникающие в результате волшебства или божественного вмешательства в весьма неожиданных семьях и обстоятельствах. Напротив, наиболее распространенным фоном для вундеркиндов математики или естественных наук является академическая семья - папа, мама или оба родителя - профессора - или аналогичная семейная среда, богатая математикой и естествознанием. Многие вундеркинды, которых я встретил в Калифорнийском технологическом институте или других учреждениях, имеют академическое или иное богатое семейное прошлое. Ни одного дворника из MIT 🙂.

Вундеркинды также часто изображаются совершившими крупные научные или технологические прорывы подростками . Это очень редко в реальном мире. Это правда, что люди в возрасте от двадцати лет совершили немало крупных научных и технологических открытий, но подростки встречаются довольно редко. Даже Фило Фарнсворт, которому часто приписывают изобретение электронного телевидения в четырнадцать лет, не имел рабочего прототипа электронного телевизора до двадцати лет.

Большинство настоящих математических вундеркиндов, как и большинство или все шахматные вундеркинды, по-видимому, достигают своих выдающихся результатов благодаря обширному обучению и практике, даже если у них есть врожденные способности к математике. Любопытно, что многие настоящие вундеркинды не достигают тех достижений, на которые можно было бы рассчитывать в дальнейшей жизни.

Во-вторых, настоящие чудеса очень редки. Несмотря на изображение в Real Genius , большинство студентов Калифорнийского технологического института в 1980-х годах не были вундеркиндами из реального мира, не говоря уже о таких преувеличенных вымышленных вундеркиндах, как Митч Тейлор и Крис Найт (которых играет Вэл Килмер).Исторически сложилось так, что особенно до трансформации математики и естественных наук во время и сразу после Второй мировой войны, что затруднило дальнейшую карьеру в математике или естественных науках без очень высоких количественных оценок на стандартных тестах и ​​экзаменах, многих достижений в математике и высших математических науках. были сделаны не-вундеркиндами. Некоторые из его учителей называли математика Германа Грассмана «медлительным». Минковский назвал Эйнштейна «этой ленивой собакой». Грассманн и Эйнштейн являются примерами «поздно расцветающих» в математике и физике.

Изучая математику, не сравнивайте себя с вундеркиндами, особенно вундеркиндами. Большинство людей, разбирающихся в математике, не были вундеркиндами.


Как изучать математику

Опять же, чтобы выучить математику, если вы заблудились, что является обычным и естественным, вернитесь к тому, что вы знаете, убедитесь, что вы действительно это знаете, попрактикуйтесь в том, что знаете, а затем снова двигайтесь вперед. Возможно, вам придется повторить это много раз.

Иногда шаг может быть трудным.Если возможно, постарайтесь разбить сложный шаг на более простые. Изучите каждый более простой шаг последовательно, по одному. Учебники математики и другие учебные материалы иногда пропускают ключевые шаги, представляя два или более шага как один шаг, предполагая, что это очевидно для ученика (часто это не так) или будет объяснено далее в классе (часто это не так). Следовательно, помните, что один сбивающий с толку шаг может скрыть несколько шагов. Если какой-то шаг сбивает с толку, попробуйте найти учителя, другого ученика или учебные материалы, которые могут объяснить этот шаг более ясно и более подробно.

Математика является абстрактным предметом и страдает излишней абстракцией в учебных материалах и преподавании. Печально известный пример этого - обучающий эксперимент «Новая математика» 1960-х годов.

Некоторые из вас, у кого есть маленькие дети, возможно, оказались в затруднительном положении, будучи не в состоянии выполнять домашнее задание по арифметике своего ребенка из-за нынешней революции в преподавании математики, известной как новая математика. Итак, как общественное служение здесь сегодня вечером, я подумал, что проведу краткий урок Новой математики.Сегодня мы поговорим о вычитании. Это первая комната, в которой я работал какое-то время, в которой не было классной доски, поэтому нам придется прибегнуть к более примитивным наглядным пособиям, как говорится в «ed biz». Рассмотрим следующую задачу на вычитание, которую я поставлю здесь: 342 - 173.

А теперь вспомните, как мы это делали. три из двух - девять; носите с собой одну, и если вам меньше 35 лет или вы ходили в частную школу, вы говорите, что семь из трех - шесть, но если вам больше 35 лет и вы ходили в государственную школу, вы говорите, что восемь из четырех - шесть; возьмите один, чтобы у нас было 169, но в новом подходе, как вы знаете, важно понять, что вы делаете, а не получить правильный ответ.Вот как они это делают сейчас ...

Том Лерер, Введение в новую математику (Песня)

Правило (для большинства людей) в математике: если шаг оказывается слишком абстрактным, ищите более конкретные, конкретные учебные материалы и примеры. Если «шары в урнах» (пресловутый штамп вероятности и статистики) слишком абстрактны для вас, поищите объяснения и примеры с «печеньем в банках» или что-то еще более конкретное и актуальное для вас. Что-то, что вы можете легко визуализировать или даже взять с кухни и использовать для решения проблемы.

Чем проще, конкретнее и конкретнее вы можете сделать каждый шаг в изучении математики, тем легче будет для большинства людей. Практикуйтесь, практикуйтесь, практикуйтесь, пока не овладеете шагом. Чтобы что-то запомнить, обычно требуется как минимум три отработанных примера или других повторений. Часто для полного овладения мастерством требуется гораздо больше повторений с последующим периодическим использованием. Тогда и только тогда переходите к следующему шагу в последовательности.

Начните с простого, конкретного и особенного.Со временем появятся абстрактные и более сложные. Не начинайте с абстрактного или сложного. Если что-то слишком абстрактное или сложное для вас, сделайте это конкретным и, если возможно, упростите. Поищите в библиотеке, магазине подержанных книг, в Интернете везде, где только возможно, более простые и конкретные учебные материалы и примеры, которые подходят вам. Практика, практика, практика. Сегодня многие учебные пособия, видео лекций и другие материалы (самого разного качества) доступны бесплатно в Интернете.


Опасности питья из пожарного шланга

Критическая зависимость каждого шага от усвоения предыдущего шага в изучении математики имеет серьезные последствия для образования.Когда много месяцев назад я подал заявление в Калифорнийский технологический институт, в рекламных материалах университета была фраза, в которой обучение в Калтехе сравнивалось с «питьем из пожарного шланга». Такая риторика нравится молодым людям, особенно молодым мужчинам. Конечно, никто в здравом уме не станет пить из пожарного шланга. В то время мне этого не приходило в голову.

В 1980-х годах, а может быть, и по сей день, в Калифорнийском технологическом институте был ошеломляющий показатель отсева - около трети его самых умных студентов.

Вскоре стало очевидно, что большая часть учений известных исследователей была довольно посредственной. Это не очень хорошо сравнивалось с преподаванием математики и естествознания, которое я испытал ранее. В то время мне не хватало адекватного понимания того, как успешно преподаются математические и естественные темы, и я научился объяснять, что профессора делали неправильно. Следует отметить, что успех в качестве исследователя или ученого, по-видимому, не связан со способностью и навыками фактически преподавать в своей области 🙂.

В чем была проблема? В общем, профессора торопливо просматривали материал, особенно многие фундаментальные темы и концепции, которые они считали основными и очевидными, а иногда даже полностью их пропускали. Они часто задавали чрезвычайно сложные, сложные, иногда «трюковые» задачи, такие как вводных примеров, домашних заданий и экзаменационных задач. Задачи могли быть интеллектуально увлекательными для исследователя с многолетним опытом, но совершенно неуместными для студентов, изучающих математику или физику.

Я все еще хорошо помню, как профессор второго курса математики бормотал о «линейных функциях» и «линейных операторах», пока один разочарованный студент наконец не заговорил и не спросил: «Что такое линейное?» Профессор действительно дал довольно хороший ответ на вопрос о том, что означает линейность в математике, но дело в том, что эта идея была настолько принята как должное знаменитым математическим факультетом, что они даже не потрудились преподать ее во вводной части. классы. 🙂

Оглядываясь назад, можно сказать, что большинство студентов Калифорнийского технологического института были из школ с отличными математическими и естественными , преподававшими , которые следовали многим правилам, изложенным в этой статье.В классах было достаточно простых примеров и повторений, чтобы мотивированный студент усвоил и усвоил материал. Фактически, во многих случаях очень одаренные студенты, поступившие в Калифорнийский технологический институт, вероятно, чувствовали, что могут идти быстрее, отсюда и привлекательность «пить из шланга».

Урок для любого, кто изучает математику, состоит в том, чтобы убедиться, что любой курс или учебная программа, которые вы изучаете, проходят достаточно медленно, выделяя время, чтобы представить каждый шаг в простой и понятной форме, чтобы вы могли полностью усвоить материал - изучите и освоите каждый шаг перед переход к следующему шагу.Это не должно быть «питье из пожарного шланга». Скорее, вы должны почувствовать, что можете пойти немного быстрее. Не в десять раз быстрее, но должна быть подушка, больше времени и повторений, чем абсолютно необходимо, на случай, если у вас возникнут трудности с обучением конкретному шагу, вы заболеете, расстанетесь с девушкой / парнем или произойдет что-то еще. Реальная жизнь полна неожиданных неудач.


Заключение

Каждый шаг в изучении математики критически зависит от изучения и усвоения предыдущего шага или шагов.Самое важное правило для овладения математикой: если вы заблудились (а большинство людей, включая «экспертов», часто теряются), вернитесь к тому, что вы знаете, и начните заново. Не пытайся продолжать; в большинстве случаев вы только потеряете больше. При необходимости, когда вы делаете резервную копию и начинаете все сначала, делайте меньшие шаги, находите и используйте более простые, более конкретные и более конкретные учебные материалы и примеры и больше практикуйтесь на каждом шаге. Повторяйте этот процесс, делая резервные копии, упрощая и практикуясь, пока не обнаружите, что делаете успехи.Не пытайтесь «пить из шланга». Потерпи. Не торопитесь, изучите и осваивайте каждый шаг последовательно. В двух словах, это секрет овладения математикой для большинства людей.

© 2014 Джон Ф. Макгоуэн

Об авторе

Джон Ф. Макгоуэн, доктор философии решает задачи с использованием математического и математического программного обеспечения, включая разработку технологий сжатия видео и распознавания речи. Он имеет обширный опыт разработки программного обеспечения на C, C ++, Visual Basic, Mathematica, MATLAB и многих других языках программирования.Он, вероятно, наиболее известен своим обзором AVI, часто задаваемыми вопросами в Интернете о формате файлов Microsoft AVI (Audio Video Interleave). Он работал подрядчиком в исследовательском центре NASA Ames Research Center, занимаясь исследованиями и разработкой алгоритмов и технологий обработки изображений и видео, а также приглашенным научным сотрудником в HP Labs, занимающимся разработкой приложений компьютерного зрения для мобильных устройств. Он опубликовал статьи о происхождении и эволюции жизни, исследовании Марса (в ожидании открытия метана на Марсе) и дешевом доступе в космос.Имеет докторскую степень. по физике из Университета Иллинойса в Урбана-Шампейн и степень бакалавра наук по физике Калифорнийского технологического института (Калифорнийский технологический институт).

Получите больше подобных вещей

Получайте интересные математические обновления прямо в свой почтовый ящик.

Спасибо за подписку. Пожалуйста, проверьте свою электронную почту, чтобы подтвердить подписку.

Что-то пошло не так.

.

Смотрите также