Как научиться решать задачи по математике 4 класс


Как научить ребенка решать задачи по математике 1-4 класс?

Практически в любой сфере жизни нужны навыки измерений, определений, расчетов, и сделать это без знания математики крайне сложно. Начиная с первых уроков арифметики, следует донести эту мысль малышам, чтобы они понимали – задача не живет только на страницах учебника, она входит в повседневную жизнь и влияет на нее.

Способов, как правильно научить ребенка решать и понимать задачи по математике, существует несколько, элементы каждого из них можно применять не только во 2 и 3 классе, но даже в старшем возрасте. Формировать такие навыки необходимо, они во многом повлияют на дальнейшие успехи в учебе.

Смотрите также:

Содержание статьи:

Как научить решать задачи по математике ребенка 1-4 классов

Поскольку знакомство с математикой начинается в начальной школе, то и приобретение навыка справляться с такими головоломками происходит в данный период.

Для чего необходим навык

Важно понимать, что научившись справляться с математическими заданиями в начальной школе, ребенок сможет успешно овладеть химией, физикой, астрономией и другими предметами в старших классах. Родители просто обязаны помочь своему чаду с математикой в первых классах, поскольку данный вид занятий напрямую связан с четким логическим мышлением, способностью анализировать, делать выводы.

Полезно знать!

Кроме этого, задания на счет тренируют память, внимание, развивают способность рассуждать, положительно сказываются на когнитивных способностях в целом.

Общий алгоритм обучения

Следует придерживаться такой последовательности шагов, чтобы научить детей правильно выполнять математические задания:

  1. Внимательное чтение условий и разложение заданий на этапы: условие, вопрос, решение, ответ.
  2. Составление плана для выяснения неизвестного. Для маленьких хорошо применять рисунки-схемы на данном этапе, приводить примеры из личного опыта, которые аналогичны условию задачи, для лучшего ее восприятия.

    Также уместно использование простеньких сценариев, которые позволяют детям «быть внутри задания».

  3. Акцент на тексте головоломки и поиск ответа в нем. Важно научить тому, что в математике нет лишних фраз, все они важны и используются для нахождения ответа, который заложен в формулировку предложений.
  4. Практика и еще раз практика. Для того, чтобы дети успешно овладели навыками сложения, вычитания, умножения, им необходимо довести эти действия до автоматизма.

Распространенные ошибки в решении задач

Главные ошибки в процессе поиска ответа следующие:

  • беглое чтение условия задачи, которое не позволяет определить, какой именно ответ нужен;
  • неправильное понимание последовательности действий, особенно при поиске нескольких неизвестных;
  • некорректный ответ может быть формальным, когда перепутаны единицы измерения или же неправильно вычисленным.

Запомните!

Важно научить малыша самостоятельно исправлять и находить ошибки, перепроверять задачу, а не просто откладывать ее в сторону, если что-то не получилось.

Смотрите также:

Особенности решения задач в 1 классе

На начальном этапе используются так называемые «текстовые» задания, которые знакомят малышей в 1 классе с арифметикой и проблематикой поиска неизвестных данных. Для таких заданий характерно:

  • описание простых сюжетов в задании, которые понятны и знакомы ребенку;
  • решение таких головоломок помогает осознать важность математических знаний;
  • формирование ключевых умений: выделение условия и вопроса, установление зависимости между понятиями и данными, построение логической цепочки решения, проверка результата.
Первыми задачами, с которыми знакомятся дети в школе, являются варианты на сложение и вычитание.

Для того, чтобы научить первоклашек таким понятиям как «условие», «ответ», «неизвестное» следует использовать такие методы:

  • дополнительные, наводящие вопросы по условиям;
  • составление схем-рисунков условий;
  • перевод текста в схематическую модель;
  • объяснение значений фраз в условии задания;
  • выбор варианта решения, исходя из схемы;
  • обозначение в схеме известных и неизвестных разными способами.

Успешное получение навыков в решении простых задач поможет освоить математическую дисциплину в последующих этапах обучения.

Что делать, если ребенок не понимает задачи по математике во 2 классе

В математике второго года обучения также основными остаются текстовые задачи, которые требуют найти неизвестное при наличии двух известных чисел. Если ребенок не понимает, как следует работать с задачами по математике во 2 классе, то не следует паниковать и критиковать его. Еще вполне можно наверстать то, что упущено. Рекомендовано пройтись по основам данной проблемы и разобраться с ней:

При последовательной работе и выполнении подобных заданий, дети начинают запоминать их и понимают причинно-следственные связи между действиями и результатами, что в конечном итоге и требуется для работы с арифметикой.

Смотрите также:

Специфика обучению решения математических задач в 3 классе

Важной возрастной особенностью третьеклассника является активное развитие мыслительных процессов, что позволяет усваивать большие объемы информации и понимать сложные действия. Особенностями обучения решению арифметических заданий на данном этапе можно назвать следующие:

Полезно знать!

Важно также учить детей самостоятельно придумывать математические задачи, чтобы развивать их логическое мышление и способность формулировать задания.

Смотрите также:

Как просто решать задачи в 4 классе

В это период очень важно закрепить навыки работы с задачами разной степени сложности, чтобы применять их в дальнейшем. В 4 классе следует развивать не только автоматизацию процесса решения математических заданий, но и стимулировать интерес к ним разными способами:

  • изменение условий, предполагающее нахождение нескольких способов решения;
  • модификация числовых данных и единиц измерения;
  • использование кратких схем и чертежей вместо текстовых условий;
  • обнаружение ошибок в уже решенной задаче;
  • замена цифр на буквы.
Математические задачи в 4 классе

Только используя различные альтернативные варианты обучения можно подвести ребенка к простому алгоритму, применяемому к любой задаче:

  1. Ознакомление с условием.
  2. Определение неизвестных и способы их поиска.
  3. Анализ и вычисление.
  4. Ответ на главный вопрос.
  5. Проверка корректности найденного числового значения.
  6. Оформление задания письменно.

Если учителю и родителям удалось привести ученика к данному алгоритму работы с математическими головоломками, то он сможет успешно решать простые и сложные задачи.

Как учить ребенка решать задачи, если математика ему  трудно дается

Доказано, что школьный курс математики способен освоить любой школьник, у которого нормально развита логика и работают мыслительные процессы. Зачастую родители предпочитают считать, что если ребенку трудно дается математика, то у него просто гуманитарный склад ума и эта дисциплина ему не нужна.

Важно!

Такая точка зрения в корне неверна, поскольку именно математика развивает логическое и критичное мышление, без которых ни один гуманитарий не может быть успешным. Скорее всего, трудности связаны с психологическими проблемами. Для обучения детей, у которых есть проблемы с арифметикой в начальной школе, можно применять такие приемы:
  • акцентировать внимание на смысле фраз, а не числах;
  • учить малыша отличать главную и второстепенную информацию;
  • использовать рисование схем, моделей решения;
  • применять цветовую гамму для создания контраста известных и неизвестных величин;
  • описывать вместо условий задания ситуации, знакомые ребенку в его жизненном опыте;
  • привлекать внимание к возможности применить знание математических действий и правил в реальной жизни;
  • использовать образы и условных героев-помощников.
Только индивидуальный и креативный подход в обучении поможет школьнику, который испытывает трудности с арифметикой, перебороть свои страхи и научиться решать различные задания.

Смотрите также:

Как научить ребенка решать логические задачи по математике

Такая разновидность заданий дает возможность развивать логику детей и позволяет им обретать навыки нестандартного мышления. Постановка логических задач часто предполагает изобретение особого способа их решения, но все же существуют некоторые разработанные методы их решения, которым и следует обучить школьников:

  • метод рассуждений;
  • таблицы истинности;
  • метод блок-схем;
  • средства алгебры высказываний;
  • графический метод;
  • математический бильярд.

На заметку!

Для начальной школы лучше всего подходит метод рассуждений и табличный способ.

При использовании рассуждений важно разделить условие задания на маленькие фрагменты и сделать последовательные выводы из каждого из них, таким образом ребенок приходит к ответу. Данный вариант решения можно также применять, начиная с конца условия, что тоже приводит к решению, но другим путем.

Применение таблиц истины дает возможность разделить все данные в тексте задачи на истинные и ложные, сравнить их наглядным образом и сделать соответствующие умозаключения о варианте ответа.

Для успешного овладения навыками решения математических головоломок детям требуется разный подход и приемы в зависимости от возраста и индивидуальных особенностей.

Математика 4 класс, модуль 2

Математика 4 класс 2 модуль

Уровень 4 Модуль 2: Преобразование единиц измерения и решение проблем с помощью метрических измерений

Модуль 2 использует длину, массу и вместимость в метрической системе для преобразования единиц измерения с использованием знания разряда. Студенты узнают образцы преобразования единиц на диаграмме разряда, так же как 1000 граммов равны 1 килограмму, 1000 единиц равны 1 тысяче.Преобразования записываются в двухколоночных таблицах и числовых строках и применяются в одно- и многоступенчатых задачах со словами, решаемых с помощью алгоритма сложения и вычитания или специальной стратегии. Практика смешанных единиц подготавливает студентов к многозначным операциям и управлению дробными единицами в будущих модулях.

.

Стандартов для математической практики | Инициатива Common Core State Standards

Стандарты математической практики описывают различные виды знаний, которые преподаватели математики на всех уровнях должны стремиться развивать у своих учеников. Эти практики опираются на важные «процессы и навыки», которые имеют давнюю важность в математическом образовании. Первыми из них являются стандарты процесса NCTM для решения проблем, аргументации и доказательства, коммуникации, представления и связей.Вторые - это направления математической подготовки, указанные в отчете Национального исследовательского совета Adding It Up : адаптивное мышление, стратегическая компетенция, концептуальное понимание (понимание математических концепций, операций и отношений), беглость процедур (умение гибко выполнять процедуры, точно, эффективно и уместно) и продуктивному расположению (привычная склонность рассматривать математику как разумную, полезную и полезную, в сочетании с верой в усердие и собственную эффективность).

Стандарты в этой области:

CCSS.Math.Practice.MP1 осмысливать проблемы и настойчивость в их решении.

Студенты со знанием математики начинают с объяснения себе значения проблемы и поиска точек входа для ее решения. Они анализируют данные, ограничения, отношения и цели. Они строят предположения о форме и значении решения и планируют путь решения, а не просто предпринимают попытки решения. Они рассматривают аналогичные проблемы и пробуют частные случаи и более простые формы исходной проблемы, чтобы получить представление о ее решении.Они контролируют и оценивают свой прогресс и при необходимости меняют курс. Учащиеся старшего возраста могут, в зависимости от контекста задачи, преобразовывать алгебраические выражения или изменять окно просмотра на своем графическом калькуляторе, чтобы получить необходимую информацию. Математически опытные студенты могут объяснять соответствия между уравнениями, словесными описаниями, таблицами и графиками или рисовать диаграммы важных функций и отношений, графических данных и искать закономерности или тенденции. Учащиеся младшего возраста могут полагаться на использование конкретных предметов или изображений, чтобы помочь осмыслить и решить проблему.Математически опытные студенты проверяют свои ответы на задачи, используя другой метод, и они постоянно спрашивают себя: «Имеет ли это смысл?» Они могут понимать подходы других к решению сложных проблем и определять соответствия между разными подходами.

CCSS.Math.Practice.MP2 Размышляйте абстрактно и количественно.

Студенты со знанием математики понимают величины и их отношения в проблемных ситуациях. Они привносят две взаимодополняющие способности для решения проблем, связанных с количественными отношениями: способность деконтекстуализировать - абстрагироваться от данной ситуации и представлять ее символически и манипулировать символами представления, как если бы они жили своей собственной жизнью, не обязательно обращая внимание на своих референтов. - и возможность контекстуализировать , останавливаться по мере необходимости во время процесса манипуляции, чтобы исследовать ссылки на задействованные символы.Количественное рассуждение влечет за собой привычку создавать связное представление о проблеме; с учетом задействованных единиц; внимание к значению количеств, а не только к тому, как их вычислить; знание и гибкое использование различных свойств операций и объектов.

CCSS.Math.Practice.MP3 Создавайте жизнеспособные аргументы и критикуйте рассуждения других.

Студенты со знанием математики понимают и используют заявленные предположения, определения и ранее установленные результаты при построении аргументов.Они делают предположения и строят логическую последовательность утверждений, чтобы исследовать истинность своих предположений. Они могут анализировать ситуации, разбивая их на случаи, а также распознавать и использовать контрпримеры. Они оправдывают свои выводы, сообщают их другим и отвечают на аргументы других. Они индуктивно рассуждают о данных, приводя правдоподобные аргументы, учитывающие контекст, из которого данные возникли. Математически опытные учащиеся также могут сравнивать эффективность двух правдоподобных аргументов, отличать правильную логику или рассуждения от ошибочных и - если в аргументе есть изъян - объяснять, что это такое.Учащиеся начальной школы могут строить аргументы, используя конкретные референты, такие как объекты, рисунки, диаграммы и действия. Такие аргументы могут иметь смысл и быть правильными, даже если они не обобщаются и не принимаются формально до более поздних оценок. Позже студенты учатся определять области, к которым применим аргумент. Учащиеся всех классов могут слушать или читать аргументы других, решать, имеют ли они смысл, и задавать полезные вопросы, чтобы прояснить или улучшить аргументы.

CCSS. Математика. Практика.Модель MP4 с математикой.

Учащиеся со знанием математики могут применять полученные знания для решения задач, возникающих в повседневной жизни, в обществе и на рабочем месте. В младших классах это может быть так же просто, как написать дополнительное уравнение для описания ситуации. В средних классах учащийся может применять пропорциональное рассуждение для планирования школьного мероприятия или анализа проблемы в сообществе. В старшей школе ученик может использовать геометрию для решения проектной задачи или использовать функцию, чтобы описать, как одна интересующая величина зависит от другой.Математически опытные студенты, которые могут применять то, что они знают, комфортно делают предположения и приближения, чтобы упростить сложную ситуацию, понимая, что они могут потребовать пересмотра позже. Они могут определять важные величины в практической ситуации и отображать свои отношения с помощью таких инструментов, как диаграммы, двусторонние таблицы, графики, блок-схемы и формулы. Они могут математически проанализировать эти отношения, чтобы сделать выводы. Они обычно интерпретируют свои математические результаты в контексте ситуации и размышляют о том, имеют ли результаты смысл, возможно, улучшая модель, если она не служит своей цели.

CCSS.Math.Practice.MP5 Стратегически используйте соответствующие инструменты.

Студенты, разбирающиеся в математике, рассматривают доступные инструменты при решении математической задачи. Эти инструменты могут включать карандаш и бумагу, конкретные модели, линейку, транспортир, калькулятор, электронную таблицу, систему компьютерной алгебры, статистический пакет или программное обеспечение для динамической геометрии. Опытные студенты в достаточной степени знакомы с инструментами, соответствующими их классу или курсу, чтобы принимать обоснованные решения о том, когда каждый из этих инструментов может быть полезен, признавая как понимание, которое необходимо получить, так и их ограничения.Например, старшеклассники со знанием математики анализируют графики функций и решений, полученные с помощью графического калькулятора. Они обнаруживают возможные ошибки, стратегически используя оценки и другие математические знания. Создавая математические модели, они знают, что технологии могут позволить им визуализировать результаты различных предположений, исследовать последствия и сравнивать прогнозы с данными. Учащиеся с математическими знаниями в различных классах могут определять соответствующие внешние математические ресурсы, такие как цифровой контент, расположенный на веб-сайте, и использовать их для постановки или решения задач.Они могут использовать технологические инструменты для изучения и углубления понимания концепций.

CCSS.Math.Practice.MP6 Внимание к точности.

Учащиеся со знанием математики стараются точно общаться с другими. Они пытаются использовать четкие определения в обсуждениях с другими и в собственных рассуждениях. Они заявляют значение выбранных символов, в том числе используют знак равенства последовательно и надлежащим образом. Они осторожны при указании единиц измерения и маркировке осей, чтобы уточнить соответствие количеству в проблеме.Они производят точные и эффективные вычисления, выражают числовые ответы со степенью точности, соответствующей контексту проблемы. В начальных классах ученики дают друг другу тщательно сформулированные объяснения. К моменту поступления в среднюю школу они научились проверять утверждения и явно использовать определения.

CCSS.Math.Practice.MP7 Ищите и используйте структуру.

Студенты, разбирающиеся в математике, внимательно приглядываются, чтобы различить образец или структуру. Молодые студенты, например, могут заметить, что еще три и семь - это столько же, сколько еще семь и три, или они могут отсортировать набор фигур в зависимости от того, сколько сторон имеют формы.Позже учащиеся увидят, что 7 × 8 равно хорошо запоминающимся 7 × 5 + 7 × 3, чтобы подготовиться к изучению свойства распределения. В выражении x 2 + 9 x + 14 ученики старшего возраста могут видеть 14 как 2 × 7 и 9 как 2 + 7. Они осознают значение существующей линии в геометрической фигуре и могут использовать стратегия проведения вспомогательной линии для решения задач. Они также могут сделать шаг назад для обзора и изменения перспективы. Они могут видеть сложные вещи, такие как некоторые алгебраические выражения, как отдельные объекты или состоящие из нескольких объектов.Например, они могут видеть 5 - 3 ( x - y ) 2 как 5 минус положительное число, умноженное на квадрат, и использовать это, чтобы понять, что его значение не может быть больше 5 для любых действительных чисел x и и .

CCSS.Math.Practice.MP8 Ищите и выражайте закономерность в повторяющихся рассуждениях.

Студенты, разбирающиеся в математике, замечают, если вычисления повторяются, и ищут как общие методы, так и ярлыки. Ученики старших классов могут заметить при делении 25 на 11, что они повторяют одни и те же вычисления снова и снова, и заключить, что у них есть повторяющаяся десятичная дробь.Уделяя внимание вычислению наклона, поскольку они неоднократно проверяют, находятся ли точки на прямой, проходящей через (1, 2) с наклоном 3, ученики средней школы могут абстрагироваться от уравнения ( y - 2) / ( x - 1) = 3. Обратите внимание на закономерность в том, как условия отменяются при раскрытии ( x - 1) ( x + 1), ( x - 1) ( x 2 + x + 1), и ( x - 1) ( x 3 + x 2 + x + 1) может привести их к общей формуле для суммы геометрического ряда.Работая над решением задачи, ученики с математическими знаниями следят за процессом, уделяя внимание деталям. Они постоянно оценивают разумность своих промежуточных результатов.

Соединение стандартов математической практики со стандартами математического содержания

Стандарты математической практики описывают способы, с помощью которых развивающиеся студенты, практикующие математическую дисциплину, должны все больше вовлекаться в предмет по мере того, как они растут в математической зрелости и опыте в течение начальной, средней и старшей школы.Разработчики учебных программ, оценок и повышения квалификации должны уделять внимание необходимости увязать математические практики с математическим содержанием в преподавании математики.

Стандарты математического содержания представляют собой сбалансированное сочетание процедуры и понимания. Ожидания, начинающиеся со слова «понять», часто являются особенно хорошей возможностью связать практику с содержанием. Студенты, которым не хватает понимания темы, могут слишком сильно полагаться на процедуры.Без гибкой основы для работы они с меньшей вероятностью будут рассматривать аналогичные проблемы, связно представлять проблемы, обосновывать выводы, применять математику в практических ситуациях, осознанно использовать технологии для работы с математикой, точно объяснять математику другим ученикам, сделайте шаг назад, чтобы получить обзор, или отклонитесь от известной процедуры, чтобы найти ярлык. Короче говоря, непонимание фактически мешает ученику заниматься математической практикой.

В этом отношении те стандарты содержания, которые устанавливают ожидания понимания, являются потенциальными «точками пересечения» между Стандартами математического содержания и Стандартами математической практики.Эти точки пересечения призваны соотносить с центральными и генеративными концепциями школьной программы математики, которые в наибольшей степени заслуживают времени, ресурсов, инновационной энергии и концентрации, необходимых для качественного улучшения учебной программы, обучения, оценивания, профессионального развития и успеваемости учащихся. математика.

.

Наслаждаемся математикой - решение задач с помощью забавных математических головоломок

Из Wikibooks, открытые книги для открытого мира

Перейти к навигации Перейти к поиску
Ищите Наслаждайтесь математикой - решение задач с помощью забавных математических головоломок в одном из родственных проектов Викиучебника: Викиучебник не имеет страницы с таким точным названием. Выполните поиск по запросу Наслаждаюсь математикой - решение учебных задач с помощью забавных математических головоломок в Викиучебнике, чтобы проверить альтернативные названия или варианты написания.

Другие причины, по которым это сообщение может отображаться:

  • Если страница была создана здесь недавно, она может быть еще не видна из-за задержки обновления базы данных; подождите несколько минут и попробуйте функцию очистки.
  • Заголовки в Викиучебниках чувствительны к регистру , кроме первого символа; Пожалуйста, проверьте альтернативные заглавные буквы и подумайте о добавлении перенаправления сюда к правильному заголовку.
  • Если страница была удалена, проверьте журнал удалений и просмотрите политику удаления.
.

Как решать математические задачи

Математика может вызывать проблемы как у детей, так и у взрослых. Вы паникуете, когда вам нужно решить квадратное уравнение или думать о построении графиков? Оказывается, беспокоит даже физиков, когда дело касается математики и алгебраических задач!

Насколько хорошо вы умеете решать уравнения? Вы знаете свой показатель по локоть или просто думаете о дробях?

Многие люди жалуются на математику в школах, на экзамене A-level и GCSE, говоря, что никогда не будут использовать ее в реальной жизни.Однако верно и обратное. Хотя вы можете не использовать конкретную теорему, ваш мозг часто применяет их, подставляя подход к реальной ситуации, даже не осознавая этого.

Кроме того, применение рационального и математического подхода позволит вам не только решать всевозможные задачи и полиномиальные уравнения, но также улучшить вашу память.

После того, как вы научились вычислять суммы, пришло время разобраться с проблемами. (Источник: pixabay.com)

Эти проблемы возникают на протяжении всей школы.Вы должны знать, если вы хотите стать лучше в математике, как упростить ваши задачи и решить уравнение , будь то линейное уравнение или квадратная формула.

Какой бы ни была проблема (или уравнение), алгебраический подход всегда один и тот же. Когда вы решаете уравнения , вам обычно приходится решать относительно x. Это означает, что вам дана формула с определенными выражениями, иногда с коэффициентом, и ваша задача - переставить ее так, чтобы неизвестное число (обычно представленное x) стало известной величиной.

Иногда эти задачи представлены без формулы в виде словесных задач, в которых вы должны составлять и решать уравнения, вместо того, чтобы просто задавать алгебраические уравнения.

Если у вас есть пробелы в математических знаниях или вы просто хотите улучшить, вы должны овладеть этими основными математическими навыками.

Не забывайте, что математика - это ключевой предмет, и навыки, которые вы усвоите по ней, будут сопровождать вас на протяжении всей вашей академической и профессиональной жизни!

.

Смотрите также