Как научиться решать задачи по математике начальная школа


Как научить ребенка решать задачи по математике 1-4 класс?

Практически в любой сфере жизни нужны навыки измерений, определений, расчетов, и сделать это без знания математики крайне сложно. Начиная с первых уроков арифметики, следует донести эту мысль малышам, чтобы они понимали – задача не живет только на страницах учебника, она входит в повседневную жизнь и влияет на нее.

Способов, как правильно научить ребенка решать и понимать задачи по математике, существует несколько, элементы каждого из них можно применять не только во 2 и 3 классе, но даже в старшем возрасте. Формировать такие навыки необходимо, они во многом повлияют на дальнейшие успехи в учебе.

Смотрите также:

Содержание статьи:

Как научить решать задачи по математике ребенка 1-4 классов

Поскольку знакомство с математикой начинается в начальной школе, то и приобретение навыка справляться с такими головоломками происходит в данный период.

Для чего необходим навык

Важно понимать, что научившись справляться с математическими заданиями в начальной школе, ребенок сможет успешно овладеть химией, физикой, астрономией и другими предметами в старших классах. Родители просто обязаны помочь своему чаду с математикой в первых классах, поскольку данный вид занятий напрямую связан с четким логическим мышлением, способностью анализировать, делать выводы.

Полезно знать!

Кроме этого, задания на счет тренируют память, внимание, развивают способность рассуждать, положительно сказываются на когнитивных способностях в целом.

Общий алгоритм обучения

Следует придерживаться такой последовательности шагов, чтобы научить детей правильно выполнять математические задания:

  1. Внимательное чтение условий и разложение заданий на этапы: условие, вопрос, решение, ответ.
  2. Составление плана для выяснения неизвестного. Для маленьких хорошо применять рисунки-схемы на данном этапе, приводить примеры из личного опыта, которые аналогичны условию задачи, для лучшего ее восприятия.

    Также уместно использование простеньких сценариев, которые позволяют детям «быть внутри задания».

  3. Акцент на тексте головоломки и поиск ответа в нем. Важно научить тому, что в математике нет лишних фраз, все они важны и используются для нахождения ответа, который заложен в формулировку предложений.
  4. Практика и еще раз практика. Для того, чтобы дети успешно овладели навыками сложения, вычитания, умножения, им необходимо довести эти действия до автоматизма.

Распространенные ошибки в решении задач

Главные ошибки в процессе поиска ответа следующие:

  • беглое чтение условия задачи, которое не позволяет определить, какой именно ответ нужен;
  • неправильное понимание последовательности действий, особенно при поиске нескольких неизвестных;
  • некорректный ответ может быть формальным, когда перепутаны единицы измерения или же неправильно вычисленным.

Запомните!

Важно научить малыша самостоятельно исправлять и находить ошибки, перепроверять задачу, а не просто откладывать ее в сторону, если что-то не получилось.

Смотрите также:

Особенности решения задач в 1 классе

На начальном этапе используются так называемые «текстовые» задания, которые знакомят малышей в 1 классе с арифметикой и проблематикой поиска неизвестных данных. Для таких заданий характерно:

  • описание простых сюжетов в задании, которые понятны и знакомы ребенку;
  • решение таких головоломок помогает осознать важность математических знаний;
  • формирование ключевых умений: выделение условия и вопроса, установление зависимости между понятиями и данными, построение логической цепочки решения, проверка результата.
Первыми задачами, с которыми знакомятся дети в школе, являются варианты на сложение и вычитание.

Для того, чтобы научить первоклашек таким понятиям как «условие», «ответ», «неизвестное» следует использовать такие методы:

  • дополнительные, наводящие вопросы по условиям;
  • составление схем-рисунков условий;
  • перевод текста в схематическую модель;
  • объяснение значений фраз в условии задания;
  • выбор варианта решения, исходя из схемы;
  • обозначение в схеме известных и неизвестных разными способами.

Успешное получение навыков в решении простых задач поможет освоить математическую дисциплину в последующих этапах обучения.

Что делать, если ребенок не понимает задачи по математике во 2 классе

В математике второго года обучения также основными остаются текстовые задачи, которые требуют найти неизвестное при наличии двух известных чисел. Если ребенок не понимает, как следует работать с задачами по математике во 2 классе, то не следует паниковать и критиковать его. Еще вполне можно наверстать то, что упущено. Рекомендовано пройтись по основам данной проблемы и разобраться с ней:

При последовательной работе и выполнении подобных заданий, дети начинают запоминать их и понимают причинно-следственные связи между действиями и результатами, что в конечном итоге и требуется для работы с арифметикой.

Смотрите также:

Специфика обучению решения математических задач в 3 классе

Важной возрастной особенностью третьеклассника является активное развитие мыслительных процессов, что позволяет усваивать большие объемы информации и понимать сложные действия. Особенностями обучения решению арифметических заданий на данном этапе можно назвать следующие:

Полезно знать!

Важно также учить детей самостоятельно придумывать математические задачи, чтобы развивать их логическое мышление и способность формулировать задания.

Смотрите также:

Как просто решать задачи в 4 классе

В это период очень важно закрепить навыки работы с задачами разной степени сложности, чтобы применять их в дальнейшем. В 4 классе следует развивать не только автоматизацию процесса решения математических заданий, но и стимулировать интерес к ним разными способами:

  • изменение условий, предполагающее нахождение нескольких способов решения;
  • модификация числовых данных и единиц измерения;
  • использование кратких схем и чертежей вместо текстовых условий;
  • обнаружение ошибок в уже решенной задаче;
  • замена цифр на буквы.
Математические задачи в 4 классе

Только используя различные альтернативные варианты обучения можно подвести ребенка к простому алгоритму, применяемому к любой задаче:

  1. Ознакомление с условием.
  2. Определение неизвестных и способы их поиска.
  3. Анализ и вычисление.
  4. Ответ на главный вопрос.
  5. Проверка корректности найденного числового значения.
  6. Оформление задания письменно.

Если учителю и родителям удалось привести ученика к данному алгоритму работы с математическими головоломками, то он сможет успешно решать простые и сложные задачи.

Как учить ребенка решать задачи, если математика ему  трудно дается

Доказано, что школьный курс математики способен освоить любой школьник, у которого нормально развита логика и работают мыслительные процессы. Зачастую родители предпочитают считать, что если ребенку трудно дается математика, то у него просто гуманитарный склад ума и эта дисциплина ему не нужна.

Важно!

Такая точка зрения в корне неверна, поскольку именно математика развивает логическое и критичное мышление, без которых ни один гуманитарий не может быть успешным. Скорее всего, трудности связаны с психологическими проблемами. Для обучения детей, у которых есть проблемы с арифметикой в начальной школе, можно применять такие приемы:
  • акцентировать внимание на смысле фраз, а не числах;
  • учить малыша отличать главную и второстепенную информацию;
  • использовать рисование схем, моделей решения;
  • применять цветовую гамму для создания контраста известных и неизвестных величин;
  • описывать вместо условий задания ситуации, знакомые ребенку в его жизненном опыте;
  • привлекать внимание к возможности применить знание математических действий и правил в реальной жизни;
  • использовать образы и условных героев-помощников.
Только индивидуальный и креативный подход в обучении поможет школьнику, который испытывает трудности с арифметикой, перебороть свои страхи и научиться решать различные задания.

Смотрите также:

Как научить ребенка решать логические задачи по математике

Такая разновидность заданий дает возможность развивать логику детей и позволяет им обретать навыки нестандартного мышления. Постановка логических задач часто предполагает изобретение особого способа их решения, но все же существуют некоторые разработанные методы их решения, которым и следует обучить школьников:

  • метод рассуждений;
  • таблицы истинности;
  • метод блок-схем;
  • средства алгебры высказываний;
  • графический метод;
  • математический бильярд.

На заметку!

Для начальной школы лучше всего подходит метод рассуждений и табличный способ.

При использовании рассуждений важно разделить условие задания на маленькие фрагменты и сделать последовательные выводы из каждого из них, таким образом ребенок приходит к ответу. Данный вариант решения можно также применять, начиная с конца условия, что тоже приводит к решению, но другим путем.

Применение таблиц истины дает возможность разделить все данные в тексте задачи на истинные и ложные, сравнить их наглядным образом и сделать соответствующие умозаключения о варианте ответа.

Для успешного овладения навыками решения математических головоломок детям требуется разный подход и приемы в зависимости от возраста и индивидуальных особенностей.

Почему математические словесные задачи ТАК трудны для детей начальной школы?

Вы здесь: Главная → Статьи → Задачи со словом

Большинство детей любят рассказы и даже задачи и головоломки. Так почему же им так трудно решать математические задачи со словами? Я чувствую, что ответ кроется в ВИДАХ словесных задач, которые они решают в самые первые годы школы (1-4 классы).

Эти трудности не начинаются в 1-м классе с таких простых задач, как: На озере пять уток и три на берегу.Сколько всего уток? Часто к учебнику по математике прилагается красивая картинка. Вместо этого, как правило, начиная с 3-го класса многие ученики не могут применять математику даже в самых простых ситуациях, описанных словами.

Я чувствую, что все сводится к этому "рецепту" , который используется в МНОЖЕСТВАХ уроков математики:

УРОК X

Пояснения и примеры.
Числовые упражнения.
Несколько проблем со словами.

Обратите внимание на следующие характеристики:

  • Задачи со словами обычно находятся в конце урока. Таким образом, если нет времени, они пропускаются. Кроме того, поскольку они размещаются последними в уроке, похоже, что они наименее важная часть ... верно?
  • Очень важно: вы когда-нибудь замечали ... Если урок посвящен теме X, то слова «проблемы» также относятся к теме X!

    Например, если тема урока - длинное деление, то задачи со словами в уроке, скорее всего, будут решены с помощью длинного деления.

  • Другой общей характеристикой является то, что часто в словарных задачах есть только ДВА числа . Другими словами, это одноэтапные проблемы. (Одноэтапные задачи преобладают в некоторых учебных программах вплоть до 7-го класса!) Таким образом, даже если вы не поняли ни слова в слове «проблема», вы можете решить ее. Просто попробуйте: допустим, на уроке длинного деления обнаружена следующая выдуманная задача. Вы можете решить это?

    La tienda tiene 873 sábanas и 9 различных цветов.Hay la misma cantidad en cada color. ¿Cuántas sábanas de cada color tiene la tienda?

Я думаю, что с годами, когда дети подвергаются таким урокам снова и снова, они как бы понимают, что даже не читать задачу внимательно с умом менее требовательно. Зачем беспокоиться? Просто возьмите два числа и разделите (или умножьте, или сложите, или вычтите) и все.

Я не говорю, что такие словесные задачи не нужны в конце уроков по разделению.Я уверен, что у них есть свое место. Но эти простые рутинные задачи заставят учащихся усвоить невысказанное «правило» :

.

Что можно и нельзя в обучении решению задач по математике

Вы здесь: Главная → Статьи → Решение задач

Многие студенты-математики в США боятся, если не ужасаются, математических задач со словами. В общем, они считаются сложными.

Почему это должно быть? Это не совсем понятно. Я не могу себе представить, чтобы дети не любили словесные задачи только потому, что им нужно найти ответ на что-то (проблему) или потому, что проблема объясняется словами.Например, даже большинство из нас, взрослых, увлекаются головоломками.

Кроме того, этот страх перед проблемами со словами определенно не может начаться в 1-м классе. Задачи-рассказы в первом классе очень простые, например: «На озере пять уток и три на берегу. Сколько всего уток?» Часто в учебнике по математике даже есть картинка, которая сопровождает ее. Я не могу представить, чтобы дети чувствовали, что это сложно.

Я чувствую, что вызывает для этой трудности многократно:

  1. Одношаговые задачи со словами преобладают в конце уроков, отрабатывая конкретную операцию в младших классах.Они побуждают детей просто находить числа и использовать изучаемую операцию линейно, как если бы все задачи со словами были решены с помощью «рецепта».
  2. Во многих школьных учебниках не хватает ХОРОШИХ задач со словами . Обычно они включают в себя множество одноэтапных задач, а затем несколько отдельных уроков по решению проблем, которые обычно выделяют конкретную стратегию решения проблем (так что, опять же, у вас есть «правило», которое решает проблемы на этом уроке).
  3. Учителя боятся проблем со словами, поэтому пропускают их.

Давайте рассмотрим 1 и 2 подробнее.


1. В конце уроков преобладают одноступенчатые задачи со словами

Вы часто видите это в младших классах. Дети практикуют, возможно, многозначное умножение, возможно, заимствование при вычитании, возможно, деление десятичных знаков. После вычислительных задач следует несколько словесных задач, которые, как ни странно, решает с использованием только что отработанной точной операции !

Это выходит за рамки уроков по четырем операциям.Разве вы не замечали: если урок посвящен теме X, то слова «проблемы» также относятся к теме X!

Когда дети сталкиваются с такими уроками снова и снова, они понимают, что даже не читать задачу слишком внимательно с психологической точки зрения менее требовательно. Зачем беспокоиться? Просто возьмите два числа и разделите (или умножьте, или сложите, или вычтите) и все.

Это, конечно, еще больше поощряется тем фактом, что слово «задачи» в конце таких уроков обычно имеет только два числа .Так что, даже если не понял СЛОВО в задаче, возможно, вы сможете это сделать! Просто попробуйте: следующая придуманная задача написана на ФИНСКОМ ЯЗЫКЕ ... и, допустим, она найдена на уроке с длинными разделениями. Я предполагаю, что вы НЕ знаете финского языка, но можете ли вы решить его?

Kaupan hyllyillä on 873 lakanaa, 9: ää eri väriä. Joka väriä на саман верран. Kuinka monta lakanaa on kussakin värissä?

Наведите указатель мыши на пустое пространство ниже, чтобы увидеть перевод (выделите его).

В магазине 873 листа 9 разных цветов. Для каждого цвета имеется одинаковое количество листов. Сколько листов каждого цвета?

Использование большого количества задач такого рода вскоре приводит к проблеме: дети «учат» (разумно) это невысказанное правило:

«Задачи со словами, найденные в учебниках математики, решаются с помощью некоторой процедуры или правила, которое вы найдете в начале этого конкретного урока ».

Как избежать этой ужасной ситуации? Перепутайте словесные задачи , чтобы не все из них были решены только что изученной операцией.Другая идея состоит в том, чтобы дать учащимся кучу задач с короткими словами для анализа, чтобы вместо того, чтобы вставлять ответы, они находили, какие операции необходимы для получения ответа.


2. Во многих школьных учебниках не хватает ХОРОШИХ задач со словами.

Под хорошими задачами я имею в виду многоступенчатых задач, которые повышают сложность на выше оценок и способствуют развитию ци

.

Как учить математику | Блог по математике ∞

Мистер Джабез ​​Уилсон сильно засмеялся. "Ну я никогда!" сказал он. «Сначала я подумал, что ты сделал что-то умное, но вижу, что в этом все-таки ничего не было».

«Я начинаю думать, Ватсон, - сказал Холмс, - что я ошибаюсь в объяснении. «Omne ignotom pro magnifico», знаете ли, и моя бедная маленькая репутация, такая как она есть, потерпит кораблекрушение, если я буду так откровенен ... »

Лига красных голов, Артур Конан Дойл

Недавно меня спросил менеджер, специализирующийся на английском языке, который испытывал трудности с количественной частью GMAT (Graduate Management Admissions Test), как изучать математику.Многие люди борются с математикой в ​​нашем все более математическом мире, начиная от балансирования своей чековой книжки и управления бюджетом на работе до понимания заумных математических моделей, которые все чаще и чаще используются в дебатах о государственной политике, таких как глобальное потепление. Эта статья представляет собой расширенную версию моего ответа.

Самое важное правило для овладения математикой: если вы заблудились (а большинство людей, включая «экспертов», часто теряются), вернитесь к тому, что вы знаете, и начните заново.Не пытайся продолжать; в большинстве случаев вы только потеряете больше. При необходимости, когда вы делаете резервную копию и начинаете заново, делайте меньшие шаги, находите и используйте более простые, более конкретные и более конкретные учебные материалы и примеры, и больше практикуйтесь на каждом шаге. Повторяйте этот процесс, делая резервные копии, упрощая и практикуясь, пока не обнаружите, что добиваетесь прогресса. Короче говоря, это секрет овладения математикой для большинства людей.


Математика не похожа на английский

Многие математически ориентированные люди имеют слабые словесные навыки.Устные результаты теста SAT для студентов инженерных и научных школ, таких как Массачусетский технологический институт, Калифорнийский технологический институт и Карнеги-Меллон, как правило, намного ниже их впечатляющих количественных / математических оценок. И наоборот, многие люди с сильными словесными навыками плохо разбираются в математике. Я несколько необычен тем, что я набрал 99-й процентиль по вербальным разделам экзаменов SAT для студентов и выпускников GRE. Я могу сравнивать изучение математики и изучение английского (и других гуманитарных наук) лучше, чем большинство других.

Математика отличается от английского и многих других гуманитарных наук. В математике каждый шаг критически зависит от каждого предыдущего шага. Обучение сложению зависит от знания чисел и умения считать. Умножение бессмысленно без мастерства сложения: трижды четыре означает «сложить три четверки вместе (4 + 4 + 4)» или «сложить четыре тройки вместе (3 + 3 + 3 + 3)». Деление определяется в терминах умножения: двенадцать, разделенное на три, - это число, которое при умножении на на три дает двенадцать (ответ - четыре).Эта критическая зависимость каждого шага от предыдущего шага или шагов обнаруживается в большинстве математических дисциплин, от базовой арифметики до алгебры и исчисления, от доказательства теорем в продвинутой чистой математике до выполнения сложных вычислений вручную или с помощью компьютера.

В английском и многих других гуманитарных науках пропуск шага - незнание определения нового слова, пропуск нескольких предложений или даже страниц в спешке и т. Д. - часто не является препятствием. Вы можете продолжать. Значение неизвестного слова или пропущенных отрывков часто становится понятным из контекста.Важно получить общую картину - суть отрывка, статьи или книги, - но конкретные детали часто могут быть упущены или плохо поняты без фатальных последствий. Вы все равно можете получить пятерку в школе или хорошо работать. Конечно, лучше читать и понимать каждое слово и каждую деталь, но обычно это несущественно.

В математике, когда вы сталкиваетесь с неизвестным термином или символом, очень важно понять его значение и практическое использование, прежде чем продолжить. В противном случае в подавляющем большинстве случаев вы заблудитесь и будете теряться все больше и больше по мере продвижения.Если какой-либо один шаг в вычислении, выводе формулы или доказательстве теоремы не имеет смысла, вам нужно остановиться, сделать резервную копию, если необходимо, и освоить его, прежде чем продолжить. В противном случае вы обычно заблудитесь. Это фундаментальное качественное различие между математикой и английским (и многими другими гуманитарными науками).


Не сравнивайте себя с Prodigies

Популярный образ математиков и математиков состоит в том, что математика сродни магии, а математики - антисоциальные чудаки, рожденные с магической силой, которая позволяет им решать дифференциальные уравнения в колыбели - никакой практики или тяжелой работы не требуется.В фильме Good Will Hunting (1997) Мэтт Дэймон - математический гений-самоучка из бедного ирландского района в Бостоне и уборщик Массачусетского технологического института, который решает математические задачи мирового класса, оставленные на классных классных досках во время уборки. В популярной комедии « Теория большого взрыва » Джим Парсонс играет Шелдона Купера, сумасшедшего физика-теоретика с предполагаемыми симптомами синдрома Аспергера, который, по всей видимости, в подростковом возрасте опубликовал революционное исследование.В фильме 1985 года Настоящий гений , действие которого происходит в вымышленном университете, очень слабо основанном на Калтехе, Габриэль Джаррет играет Митча Тейлора, пятнадцатилетнего вундеркинда-самоучки с ужасными отношениями со своими неподдерживающими родителями, который, как показано, проводит прорывное исследование для ЦРУ, будучи (15-летним) первокурсником в Pacific Tech. Еще много примеров можно привести в кино, на телевидении и в массовой культуре.

Две точки. Во-первых, эти популярные, в основном вымышленные изображения вундеркиндов математики и науки сильно преувеличены по сравнению с настоящими вундеркиндами, настолько впечатляющими и устрашающими, насколько иногда могут быть настоящие вундеркинды.Вымышленные вундеркинды, такие как «Уилл Хантинг» Мэтта Дэймона, часто изображаются как возникающие в результате волшебства или божественного вмешательства в весьма неожиданных семьях и обстоятельствах. Напротив, наиболее распространенным фоном для вундеркиндов математики или естественных наук является академическая семья (папа, мама или оба родителя - профессора) или аналогичная семейная среда, богатая математикой и естествознанием. Многие вундеркинды, которых я встречал в Калифорнийском технологическом институте или в других учреждениях, имеют академическое или другое богатое семейное образование. Ни одного дворника из MIT 🙂.

Вундеркинды также часто изображаются совершившими крупные научные или технологические прорывы подростками . Это очень редко в реальном мире. Это правда, что люди в возрасте от двадцати лет совершили немало крупных научных и технологических прорывов, но подростки встречаются довольно редко. Даже Фило Фарнсворт, которому часто приписывают изобретение электронного телевидения в четырнадцать лет, не имел рабочего прототипа электронного телевизора до двадцати лет.

Большинство настоящих математических вундеркиндов, как и большинство или все шахматные вундеркинды, по-видимому, достигают своих выдающихся результатов благодаря обширному обучению и практике, даже если у них есть врожденные способности к математике. Любопытно, что многие настоящие вундеркинды не достигают тех достижений, на которые можно было бы рассчитывать в дальнейшей жизни.

Во-вторых, настоящие чудеса очень редки. Несмотря на изображение в Real Genius , большинство студентов Калифорнийского технологического института в 1980-х годах не были вундеркиндами из реального мира, не говоря уже о таких преувеличенных вымышленных вундеркиндах, как Митч Тейлор и Крис Найт (которых играет Вэл Килмер).Исторически сложилось так, особенно до трансформации математики и естественных наук во время и сразу после Второй мировой войны, что затруднило дальнейшую карьеру в области математики или естествознания без очень высоких количественных оценок на стандартизированных тестах и ​​экзаменах, многих достижений в математике и высших математических науках. были сделаны не-вундеркиндами. Некоторые из его учителей называли математика Германа Грассмана «медлительным». Минковский назвал Эйнштейна «этой ленивой собакой». Грассман и Эйнштейн являются примерами «поздно расцветающих» в математике и физике.

Изучая математику, не сравнивайте себя с вундеркиндами, особенно вундеркиндами. Большинство людей, разбирающихся в математике, не были вундеркиндами.


Как изучать математику

Опять же, чтобы выучить математику, если вы заблудились, что является обычным и естественным, вернитесь к тому, что вы знаете, убедитесь, что вы действительно знаете это, попрактикуйтесь в том, что вы знаете, а затем снова двигайтесь вперед. Возможно, вам придется повторить это много раз.

Иногда шаг может быть трудным.Если возможно, постарайтесь разбить сложный шаг на более простые. Изучите каждый более простой шаг последовательно, по одному. Учебники математики и другие учебные материалы иногда пропускают ключевые шаги, представляя два или более шага как один шаг, предполагая, что это очевидно для ученика (часто это не так) или будет объяснено далее в классе (часто это не так). Следовательно, помните, что один сбивающий с толку шаг может скрыть несколько шагов. Если какой-либо шаг сбивает с толку, попробуйте найти учителя, другого ученика или учебные материалы, которые могут объяснить этот шаг более ясно и более подробно.

Математика является абстрактным предметом и страдает излишней абстракцией в учебных материалах и преподавании. Печально известный пример этого - обучающий эксперимент «Новая математика» 1960-х годов.

Некоторые из вас, у кого есть маленькие дети, возможно, оказались в затруднительном положении, будучи не в состоянии выполнять домашнее задание по арифметике своего ребенка из-за нынешней революции в преподавании математики, известной как новая математика. Итак, как общественное служение здесь сегодня вечером, я подумал, что проведу краткий урок Новой математики.Сегодня мы поговорим о вычитании. Это первая комната, в которой я работал какое-то время, в которой не было классной доски, поэтому нам придется прибегнуть к более примитивным наглядным пособиям, как говорится в «ed biz». Рассмотрим следующую задачу на вычитание, которую я поставлю здесь: 342 - 173.

А теперь вспомните, как мы это делали. три из двух - девять; носите с собой одну, и если вам меньше 35 лет или вы ходили в частную школу, вы говорите, что семь из трех - шесть, но если вам больше 35 лет и вы ходили в государственную школу, вы говорите, что восемь из четырех - шесть; возьмите один, так что у нас будет 169, но в новом подходе, как вы знаете, важно понять, что вы делаете, а не получить правильный ответ.Вот как они это делают сейчас…

Том Лерер, Введение в новую математику (Песня)

Правило (для большинства людей) в математике: если шаг оказывается слишком абстрактным, ищите более конкретные, конкретные учебные материалы и примеры. Если «шары в урнах» (пресловутый штамп вероятности и статистики) слишком абстрактны для вас, поищите объяснения и примеры с «печеньями в банках» или что-то еще более конкретное и актуальное для вас. Что-то, что вы можете легко визуализировать или даже взять с кухни и использовать для решения проблемы.

Чем проще, конкретнее и конкретнее вы можете сделать каждый шаг в изучении математики, тем легче будет для большинства людей. Практикуйтесь, практикуйтесь, практикуйтесь, пока не овладеете шагом. Обычно требуется как минимум три проработанных примера или других повторений, чтобы что-то запомнить. Часто для полного овладения мастерством требуется гораздо больше повторений с последующим периодическим использованием. Тогда и только тогда переходите к следующему шагу в последовательности.

Начните с простого, конкретного и особенного.Со временем появятся абстрактные и более сложные. Не начинайте с абстрактного или сложного. Если что-то слишком абстрактное или сложное для вас, сделайте это конкретным и, если возможно, упростите. Поищите в библиотеке, магазине подержанных книг, в Интернете везде, где только возможно, более простые и конкретные учебные материалы и примеры, которые подходят вам. Практика, практика, практика. Сегодня многие учебные пособия, видео с лекциями и другие материалы (самого разного качества) доступны бесплатно в Интернете.


Опасности питья из пожарного шланга

Критическая зависимость каждого шага от усвоения предыдущего шага в изучении математики имеет серьезные последствия для образования.Когда много месяцев назад я подал заявление в Калифорнийский технологический институт, в рекламных материалах университета была фраза, в которой обучение в Калтехе сравнивалось с «питьем из пожарного шланга». Это та риторика, которая нравится молодым людям, особенно молодым мужчинам. Конечно, никто в здравом уме не станет пить из пожарного шланга. В то время мне этого не приходило в голову.

В 1980-х годах, а может быть, и по сей день, в Калифорнийском технологическом институте наблюдался поразительный процент отсева - около трети его самых умных студентов.

Вскоре стало очевидно, что большая часть учений известных исследователей была довольно посредственной. Это не очень хорошо сравнивалось с обучением математике и естествознанию, которое я испытал ранее. В то время мне не хватало адекватного понимания того, как успешно преподаются математические и естественные темы, и я не научился объяснять, что профессора делали неправильно. Следует отметить, что успех в качестве исследователя или ученого, по-видимому, не связан со способностью и навыками фактически преподавать в своей области 🙂.

В чем была проблема? В общем, преподаватели торопливо просматривали материал, особенно многие фундаментальные темы и концепции, которые они считали основными и очевидными, а иногда даже полностью их пропускали. Они часто задавали чрезвычайно сложные, сложные, иногда «трюковые» задачи, такие как вводных примеров, домашних заданий и экзаменационных задач. Задачи могут быть интеллектуально увлекательными для исследователя с многолетним опытом, но совершенно неуместными для студентов, изучающих математику или физику.

Я все еще хорошо помню, как профессор второго курса математики бормотал о «линейных функциях» и «линейных операторах», пока один разочарованный студент наконец не заговорил и не спросил: «Что такое линейное?» Профессор действительно дал довольно хороший ответ на вопрос, что означает линейность в математике, но дело в том, что эта идея была принята как должное знаменитым математическим факультетом, что они даже не потрудились преподать ее во вводной части. классы. 🙂

Оглядываясь назад, можно сказать, что большинство студентов Калифорнийского технологического института были из школ с отличными математическими и естественными науками. преподавала , следуя многим правилам, изложенным в этой статье.В классах было достаточно простых примеров и повторений, чтобы мотивированный студент усвоил и усвоил материал. Фактически, во многих случаях очень одаренные студенты, поступившие в Калифорнийский технологический институт, вероятно, чувствовали, что могут идти быстрее, отсюда и привлекательность «пить из шланга».

Урок для любого, кто изучает математику, состоит в том, чтобы убедиться, что любой курс или учебная программа, которые вы изучаете, проходят достаточно медленно, выделяя время, чтобы представить каждый шаг в простой и понятной форме, чтобы вы могли полностью усвоить материал - изучите и освоите каждый шаг перед переход к следующему шагу.Это не должно быть «питье из пожарного шланга». Скорее, вы должны почувствовать, что можете пойти немного быстрее. Не в десять раз быстрее, но должна быть подушка, больше времени и повторений, чем абсолютно необходимо, на случай, если у вас возникнут трудности с изучением определенного шага, вы заболеете, расстанетесь с девушкой / парнем или произойдет что-то еще. Реальная жизнь полна неожиданных неудач.


Заключение

Каждый шаг в изучении математики критически зависит от изучения и усвоения предыдущего шага или шагов.Самое важное правило для овладения математикой: если вы заблудились (а большинство людей, включая «экспертов», часто теряются), вернитесь к тому, что вы знаете, и начните заново. Не пытайся продолжать; в большинстве случаев вы только потеряете больше. При необходимости, когда вы делаете резервную копию и начинаете заново, делайте меньшие шаги, находите и используйте более простые, более конкретные и более конкретные учебные материалы и примеры, и больше практикуйтесь на каждом шаге. Повторяйте этот процесс, делая резервные копии, упрощая и практикуясь, пока не обнаружите, что добиваетесь прогресса.Не пытайтесь «пить из шланга». Потерпи. Не торопитесь, изучите и осваивайте каждый шаг последовательно. Короче говоря, это секрет овладения математикой для большинства людей.

© 2014 Джон Ф. Макгоуэн

Об авторе

Джон Ф. Макгоуэн, доктор философии решает задачи с использованием математического и математического программного обеспечения, включая разработку технологий сжатия видео и распознавания речи. Он имеет обширный опыт разработки программного обеспечения на C, C ++, Visual Basic, Mathematica, MATLAB и многих других языках программирования.Он, вероятно, наиболее известен своим обзором AVI, часто задаваемыми вопросами в Интернете о формате файлов Microsoft AVI (Audio Video Interleave). Он работал подрядчиком в исследовательском центре NASA Ames Research Center, занимающимся исследованиями и разработкой алгоритмов и технологий обработки изображений и видео, а также приглашенным научным сотрудником в HP Labs, работающим над приложениями компьютерного зрения для мобильных устройств. Он опубликовал статьи о происхождении и эволюции жизни, исследовании Марса (в ожидании открытия метана на Марсе) и дешевом доступе в космос.Имеет докторскую степень. по физике из Университета Иллинойса в Урбана-Шампейн и степень бакалавра наук по физике Калифорнийского технологического института (Калифорнийский технологический институт).

Получите больше подобных вещей

Получайте интересные математические обновления прямо в свой почтовый ящик.

Спасибо за подписку. Пожалуйста, проверьте свою электронную почту, чтобы подтвердить подписку.

Что-то пошло не так.

,

Смотрите также